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ABSTRACT 

 

Total Suspended Solids (TSS) stormwater models in urban drainage systems are often 

required for scientific, legal, environmental and operational reasons. However, these TSS 

stormwater traditional model structures have been widely questioned, especially when 

reproducing data from online measurements at the outlet of large urban catchments. In this 

thesis, three potential limitations of traditional TSS stormwater models are analyzed in a 185 

ha urban catchment (Chassieu, Lyon, France), by means of 365 rainfall events monitored 

online: a) uncertainties in TSS data due to field conditions (data acquisition and validation); 

b) uncertainties in hydrological models and rainfall measurements and c) uncertainties in the 

stormwater quality model structures. These aspects are investigated in six separate 

contributions, whose principal results can be summarized as follows: 

a) TSS data acquisition and validation: (i) four sampling strategies during rainfall events are 

simulated and evaluated by means of online TSS and flow rate measurements. Recommended 

sampling time intervals are of 5 min, with average sampling errors between 7 % and 20 % and 

uncertainties in sampling errors of about 5 %, depending on the sampling interval; (ii) the 

probability of underestimating the cross section mean TSS concentration is estimated by two 

methodologies: Simplified Method (SM) and Time Series Method (TSM). TSM shows more 

realistic TSS underestimations (about 39 %) than SM (about 269 %). A power law describing 

the TSS as a function of flow rate is revealed, including higher variances of TSS for higher 

flow rates.  

b) Hydrological models and rainfall measurements: (iii) a parameter estimation strategy is 

proposed for conceptual rainfall-runoff models by analysing the variability of the optimal 

parameters obtained by single-event (SE) Bayesian calibrations, based on clusters and graphs 

representations. The results are compared to traditional Bayesian calibrations obtained by SE 

and multi-event (ME) approaches. The new strategy shows better performances than for SE 

and ME in terms of accuracy and precision in validation. A single model structure might be 

able to reproduce at least two different hydrological conditions for the studied urban 

catchment; (iv) a methodology aimed to calculate “mean” areal rainfall estimation is 

proposed, based on the same hydrological model and flow rate data. Rainfall estimations by 

multiplying factors over constant-length time window and rainfall zero records filled with a 

reverse model show the most satisfactory results compared to further rainfall estimation 

models.  

c) Stormwater TSS pollutograph modelling: (v) the modelling performance of the traditional 

Rating Curve (RC) model is superior to different linear Transfer Function models (TFs), 

especially in terms of parsimony and precision of the simulations. No relation between the 

rainfall corrections or hydrological conditions defined in (iii) and (iv) with performances of 

RC and linear Transfer Functions (TFs) could be established. Statistical tests strengthen that 

the occurrence of events not representable by the RC model in time presents a random 

distribution (independent of the antecedent dry weather period); (vi) a Bayesian 

reconstruction method of virtual state variables indicates that potential missing processes in 

the RC description are hardly interpretable in terms of a unique virtual available mass over the 

catchment that is decreasing over time, as assumed by a great number of traditional models.  
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RESUME 

Les modèles de Rejets Urbains par Temps de Pluie (MRUTP) de Matières en Suspension 

(MES) dans les systèmes d’assainissement urbains sont essentiels pour des raisons 

scientifiques, environnementales, opérationnelles et réglementaires. Néanmoins, les MRUTP 

ont été largement mis en question, surtout pour reproduire des données mesurées en continu à 

l’exutoire des grands bassins versants. Dans cette thèse, trois limitations potentielles des 

MRUTP traditionnels ont été étudiées sur un bassin versant de 185 ha (Chassieu, France), 

avec des mesures en ligne de 365 évènements pluvieux : a) incertitudes des données dues aux 

conditions sur le terrain (acquisition et validation), b) incertitudes des modèles hydrologiques 

et des mesures de pluie et c) incertitudes des structures traditionnelles des MRUTP. Ces 

questions sont étudiées dans six chapitres indépendants, dont les principaux résultats peuvent 

être synthétisés comme suit :         

a) Acquisition et validation des données : (i) quatre stratégies d’échantillonnage pendant les 

événements pluvieux sont simulées et évaluées à partir de mesures en ligne de MES et de 

débit. Les pas de temps d’échantillonnage recommandés sont de 5 min, avec des erreurs 

moyennes comprises entre 7 % et 20 % et des incertitudes sur ces erreurs d’environ 5 %; (ii) 

la probabilité de sous-estimation de la concentration moyenne en MES dans une section 

transversale du réseau est estimée à partir de deux méthodologies : méthode simplifiée (SM) 

et méthode des séries chronologiques (TSM). TSM montre des sous-estimations des MES 

plus réalistes (39 %) que TSM (269 %). Une loi puissance qui décrit la concentration en MES 

en fonction du débit a été établie, avec une variance des concentrations en MES qui augmente 

avec le débit.        

b) Modèles hydrologiques et mesures de pluie : (iii) une stratégie d’estimation des paramètres 

d’un modèle conceptuel pluie-débit est proposée, en analysant la variabilité des paramètres 

optimaux obtenus à partir d’un calage bayésien évènement par évènement (SE), basé sur des 

techniques de clusters et représentations de graphes. Les résultats sont comparés aux calages 

bayésiens traditionnels, obtenus par SE et des calages multi-évènementiels (ME). La nouvelle 

stratégie de calage montre les résultats les plus performants par rapport à SE et ME, en termes 

d’exactitude et de précision dans la phase de vérification. Une même structure de modèle 

permet de représenter au moins deux groupes de conditions hydrologiques différentes pour un 

bassin versant urbain; (iv) une méthode pour calculer les précipitations moyennes sur un 

bassin versant est proposée, sur la base du modèle hydrologique précèdent et des données de 

débit. Les estimations de pluie moyenne par des facteurs multiplicatifs sur des fenêtres 

temporelles constantes et les valeurs manquantes estimées par un modèle inverse montrent les 

meilleurs résultats comparés à d’autres modèles d’estimation de pluie.   

c) MRUTP (pollutographes) : (v) la performance du modèle traditionnel rating curve (RC) est 

supérieure à celle de différents modèles linéaires de fonctions de transfert (TF), surtout en 

termes de parcimonie et de précision des simulations. Aucune relation entre les potentielles 

erreurs de mesure de la pluie et les conditions hydrologiques définies en (iii) et (iv) et les 

performances des modèles RC et TF n’a pu être établie. Des tests statistiques indiquent que 

les évènements non-représentables par les modèles RC ou TF au cours du temps sont 

distribués aléatoirement (indépendance par rapport à la durée de temps antérieure); (vi) une 

méthode de reconstruction bayésienne de variables d’état virtuelles indique que des processus 

potentiellement manquants dans le modèle RC sont pratiquement ininterprétables en termes 

d’une masse disponible sur le bassin versant qui diminuerait avec le temps, comme nombre de 

modèles traditionnels l’ont supposé.  
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INTRODUCTION  
 

 

Urban cities continue to develop and their growth accelerates intensely: the urban population 

all over the world has increased from 30 % to 54 % in the last 70 years. In 2008, the rural 

population exceeded the urban one, and for year 2050 it is expected that 66 % of the 

population will live in urban centers (United Nations, 2015). The urban water cycle is 

severely affected by this urbanization process, increasing stormwater runoff volumes due to 

imperviousness of the surfaces producing higher runoff peaks and lower concentration times 

in the catchments (Fletcher et al., 2013). On the other hand, anthropogenic activities in cities 

generate a massive accumulation of different types of pollutants over the catchments, such as 

heavy metals, bacteria, hydrocarbons, sediments and nutrients (Pan et al., 2013). During 

rainfall events, a significant amount of these pollutants are transported to the outlet of 

drainage systems by urban runoff (Lee et al., 2002). Therefore, the alteration of stormwater 

natural cycle for urban catchments, jointly with the inherent production of pollutants by cities, 

results in a significant degradation of the water quality in receiving water bodies (e.g. rivers, 

seas, estuaries) (Goonetilleke et al., 2014). Indeed, indicators related to the biological 

integrity of streams and riparian habitats are inversely related to the amount of impervious 

surfaces adjacent to them (Wu and Murray, 2003).  

Consequently, legislation for regulating the quality standards of stormwater has been 

introduced in environmental laws, increasing the interest in urban stormwater quality (adapted 

from Zoppou, 2001). Many of these regulations, jointly with operational policies and urban 

planning strategies, have promoted the execution of measurement campaigns (Ackerman et 

al., 2010; MOE 2003, CDEP 2004). Environmental monitoring campaigns in this context 

frequently include the measurement of Total Suspended Solids (TSS), as a global water 

quality indicator (EPA, 1983). Indeed, TSS constitutes one of the most important descriptors 

of stormwater quality, as many pollutants are in particulate form (e.g. PAHs and metals), and 

many other toxic substances are attached to the solid particles transported into the water 

matrix (heavy metals, organic substances with high tendency to sorb, etc.) (EPA, 1983). 

However, it is well recognized that the inherent field conditions and the instrumental settings 

have a direct influence on the representativeness and uncertainties of TSS measurements 

(Ackerman et al., 2010). Therefore, appropriate data acquisition and validation methodologies 

for TSS measurements in drainage systems are required (Bertrand-Krajewski and Muste, 

2007).    

Aimed to collect more accurate, reliable and representative TSS data in this context, online 

monitoring has emerged as a technology for investigating the spatio-temporal variability and 

complexity of TSS dynamics in urban drainage systems (e.g. Hochedlinger et al., 2006). 

Chapter 2 presents a study comparing the differences between the Event Mean Concentrations 

(EMC) obtained from different sampling strategies commonly used by practitioners 

(Ackerman et al., 2010) to ECMs estimated from online monitoring. This comparison looks to 

explore the benefits of online measurements, considering that traditional sampling campaigns 

continue to be preferred among many practitioners in different countries (e.g. Ackerman et 

al., 2010). On the other hand, field measurement conditions are claimed to be an essential 

uncertainty source in TSS measurements, either by sampling campaigns or online monitoring 

(adapted from Rossi, 1998). Therefore, Chapter 3 evaluates potential uncertainties in TSS 

online measurements from operation of sensors under typical conditions, specifically 
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exploring the influence of sampling intake position through the cross section of a sewer 

system on the representativeness of TSS measurements.  

Mathematical models in urban drainage are recognized as a fundamental tool for purposes 

such as decision making, understanding of physical processes or real time control operation 

(adapted from Zoppou, 2001). For example, the stormwater quality standards in the European 

Union (Water Framework Directive, 2000/60/CE) and in the US (NPDES, Phase I (US EPA, 

1990) and Phase II (US EPA, 1999)) highlight the need of better prediction models for 

pollutants in stormwater runoff released to the receiving water bodies.  

The role of hydrology and rainfall measurements is recognized in TSS modelling, as rainfall 

is the driving process in the contamination of receiving water bodies by stormwater (Lee et 

al., 2002). Rainfall data and hydrological models are also known to be embedded with high 

uncertainties, potentially impacting the performance of TSS stormwater models. Hence, 

Chapter 4 proposes an estimation strategy for parameters in a conceptual hydrological model, 

aimed to improve the results obtained from traditional single-event and multiple-event based 

calibrations. Furthermore, with the purpose of increasing the representativeness of rainfall 

measurements, Chapter 5 presents a methodology aimed to calculate a mean areal rainfall 

estimation, based on a hydrological model and flow rate data.  

Apart from uncertainties in rainfall and TSS data, the TSS stormwater traditional model 

structures (e.g. SWMM in Rossman, 2010) have been widely questioned at the scale of large 

urban catchments, especially when reproducing data from online measurements (e.g. 

Métadier, 2011; Dotto et al., 2011). Different hypotheses about why these model structures 

are still unsatisfactory have been explored in Chapter 6 and Chapter 7. For this purpose, many 

of the discussed concepts, proposed methodologies and acquired knowledge from previous 

Chapters are used into an exploratory frame, questioning some of the paradigms in TSS 

stormwater traditional models. This exploratory frame can be further contextualized by means 

of the following research questions: 

- Are TSS online continuous time series reliable and useful for modelling purposes? (Chapters 

2 and 3) 

- Do these time series show bias or insufficient representativeness? (Chapters 2 and 3) 

- How to better calibrate rainfall-runoff models if model parameters are event-dependent? 

(Chapter 4) 

- If rainfall-runoff models are not satisfactory, could we assume that this is mainly due to 

errors in rainfall measurements and can we identify/correct them? (Chapter 5) 

- Are traditional TSS models appropriate when they are used with online continuous TSS time 

series instead of traditional samples? (Chapter 3) 

- Is there an event-dependent relation between rainfall errors and deficient performances of 

TSS models? (Chapter 6) 

- How could we revisit/improve TSS traditional models? (Chapter 6 and Chapter 7) 

The research presented in this thesis aims to fill these identified knowledge gaps, labelled as 

Chapters in the introduction. The Chapters of this manuscript are complementary works that 

are linked by the structure described in the introduction, grouped into three general topics. 

Therefore, these six individual contributions (Chapters 2 to 7) are grouped into three principal 
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Parts as follows: (i) assessing uncertainties in TSS data due to field conditions (Part 1: 

Chapter 2 and 3), (ii) evaluating uncertainties in hydrological models and rainfall 

measurements (Part 2: Chapter 4 and 5) and (iii) identifying potential improvements of the 

traditional stormwater quality models (Part 3: Chapter 6 and 7).  

The present manuscript corresponds to a thesis based on publications, and therefore each of 

the Chapters is an adapted version of an article already published or in publication process 

(see summary of articles and conferences in Appendix 4), except for Chapter 1 (Catchment 

and data) and Chapter 6. 

Considering the connection of the articles grouped under the three general topics (Parts), a 

common literature review and a description of the links between the Chapters are given in 

some introductory lines for each Part. Afterwards, each Chapter presents further literature 

review regarding its specific objectives, jointly with the developed scientific methodologies 

and their respective results, discussion and conclusions, as in a traditional article. Some 

general conclusions for each Part are provided, summarizing the results and conclusions of 

the Chapters and outlining their implications in other Parts of the manuscript. The general 

conclusions and perspectives of this manuscript are formulated from the conclusions drawn 

from the three Parts, linked by the outline of this document and the research questions 

presented in this section. 
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CHAPTER 1. CATCHMENT AND DATA 

 

All the Chapters of this manuscript are mainly based on the urban catchment of Chassieu 

(Lyon, France), with online time series monitored between 2004 and 2011. For this reason, a 

general description of this experimental site and the measured data is given in this Chapter of 

the thesis, separately from the methodologies developed and presented in the specific 

“Materials and Methods” sections of Chapters 2 to 7. As the Chassieu catchment has already 

been described in many previous publications, Chapter 1 is mainly based on and adapted from 

Métadier (2011). 

The Chassieu urban catchment is one of the five experimental sites of the OTHU project 

(Field Observatory for Urban Hydrology - www.othu.org), instrumented over the Grand Lyon 

territory since 2001, jointly with a pluviographic network. The OTHU is a research laboratory 

devoted to the installation and operation of an ensemble of measurement devices, installed in 

the urban drainage system of Lyon and in the receiving water bodies. The OTHU research 

federation groups 13 research teams, including 8 research organisations in Lyon (INSA, 

BRGM, CEMAGREF, ECL, ENTPE, Université Lyon I, Université Lyon II, Université Lyon 

III), covering different disciplines (climatology, biology, chemistry, hydrology, hydraulics, 

hydrogeology, public health...). One of the objectives of this observatory is to estimate the 

water volumes and the pollutant loads produced and released by urban areas 

(accumulation/wash-off linked to runoff), which is directly lined up with the problematics 

developed in this thesis. The site is located in the eastern part of the city, where the soils are 

mainly composed by fluvio-glacial deposits. A map of the localization of Chassieu on the 

territory of Grand Lyon (jointly with Ecully, another experimental site of the OTHU) is 

shown in Figure 1.  

 
Figure 1. Localization of the Chassieu experimental sites over the Grand Lyon territory (with Ecully) (Source: 

www.othu.org). 
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The Chassieu urban catchment is a 185 ha industrial area drained by a separate storm sewer 

system, with imperviousness and runoff coefficients of about 0.72 and 0.43 respectively. The 

effective area of the catchment can be estimated in about 80 ha (0.43  185 ha). At the outlet 

of the separate storm sewer system there is a retention basin followed by an infiltration basin. 

The volumes of the basins are 32000 m
3
 and 61000 m

3
, respectively (Figure 2 right).  

 
Figure 2. Aerial view of: the Chassieu catchment (left) (Source: www.othu.org) and the retention and infiltration 

basins (right) (source: Métadier, 2011).    

As noticed in Figure 2, the urbanization of this catchment is relatively uniform, mainly 

composed of industrial facilities, parking lots and fallow fields. A few farms and natural 

spaces are located in the surroundings of the basin (southwest), constituting about 8 % of the 

total surface. 

The flow rate Q (L/s) and TSS concentrations (mg/L) at the outlet of the catchment are 

measured in a 1.6 m circular concrete pipe with a 2 minute time-step resolution, at the outlet 

of the separate sewer system (inlet of the retention basin) (Figure 3).  

 
Figure 3. Photo of the measurement station installed at the outlet of the stormwater system (inlet of the retention 

basin) (source: Métadier, 2011). 

The discharge Q is calculated from water depth with a relative standard uncertainty from 2 % 

to 25 %. The water depth and the flow velocity are measured with a Nivus OCM PRO probe 

inside the sewer pipe. Regarding the TSS concentration, the water is pumped into an off-line 

monitoring flume in the shelter (measurement station) with a peristatic pump operating with 

an aspiration velocity of 1 m/s. Turbidity is measured by an Endress Hauser nephelometric 

probe CUS31. Turbidity measurements (NTU) are converted into TSS concentrations (mg/L) 

by local calibration functions (see a detailed description in Métadier, 2011). All probes are 

Retention 

basin 

Infiltration 

basin 
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connected to a central data acquisition unit SOFREL S50, which saves and sends the data by 

modem every night to the laboratory (see details in Dorval, 2010). The standard uncertainties 

in the estimated TSS concentrations range from 11 % to 30 %. The load (kg) for a time-step t 

with ∆t = 2 min is calculated with Q and TSS concentration data as load(t) = TSS(t)·Q(t)·∆t·c, 

where c is the SI units conversion factor. The uncertainties in the TSS load are estimated by 

the Law of Propagation of Uncertainties (LPU) (ISO, 2009), obtaining relative standard 

uncertainties from about 15 % to 50 %. Standard uncertainties become higher for higher 

values of the measurands (Q, TSS concentration, load). The rainfall is measured with the 

Meteo France rain gauge in Bron (next to Chassieu) from 2004 to 2006. After 2007, a specific 

rain gauge was installed in the Chassieu urban catchment. All rainfall measurements are 

registered with a time step of 1 min. 

The selection of the rainfall events used for each Chapter in this thesis is mainly dependent on 

the specific objectives of each study and also on the period of the thesis in which the work 

was developed (before or after 2015). From the thesis of Métadier (2011), the data from 2007 

to 2008 are particularly recommended as representative, including 89 rainfall events that were 

used to develop Chapters 2, 3 and 4. Sun et al. (2015) presented an extended version of this 

database, including additional information from 2008 to 2011, for a total of eight years of 

measurements (2004 to 2011). For the development of the subsequent Chapters (i.e. 4, 6 and 

7), 365 events were selected from the 716 events presented in Sun et al. (2015). The selection 

was based on rainfall events with a number of missing values of TSS and Q lower than 5 %. 

The missing Q and TSS values were filled by linear interpolations in these cases. The 

following Table 1 summarizes the information used for each Chapter, including the studied 

variables and the number of rainfall events.  

Table 1. Chassieu catchment data used in each Chapter  

 
Chassieu urban catchment 

 
Data base /data validation Variables number of events 

Chapter 2 Métadier, 2011 Q, TSS 89 

Chapter 3 Métadier, 2011 Q, TSS 89 

Chapter 4 Sun et al., 2015 Q, rainfall 365 

Chapter 5 Métadier, 2011 Q, rainfall 30 

Chapter 6 Sun et al., 2015 Q, TSS, rainfall 365 

Chapter 7 Sun et al., 2015 Q, TSS 255 

 

For the case of Chapter 2, the research was developed under an international cooperation with 

the KWB research project MIA-CSO (Berlin, Germany) and the Austrian research projects 

IMW2 and IMW3 (Graz, Austria). Therefore, the data of a second experimental site of the 

OTHU, Ecully (Lyon, France), was complementarily included in the analyses (see further 

details in Table 2 or Métadier, 2011 for Ecully and Lepot et al., 2017 for the other sites). 

Complementary works were developed during the thesis with the data of Ecully, for example: 

Gap-filling of dry weather flow rate and water quality measurements in urban catchments by 

a time series modelling approach in Appendix 3. 
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PART 1 TOTAL SUSPENDED SOLIDS IN URBAN 

DRAINAGE SYSTEMS: MONITORING, 

UNCERTAINTIES AND DATA ANALYSIS 

 

Measurement of Total Suspended Solids (TSS) in urban drainage systems are required for 

scientific, legal, environmental and operational reasons, as particulate matter constitutes a 

major source of surface water contamination (Ashley et al., 2004; Chebbo and Gromaire, 

2004). Therefore, appropriate data acquisition and validation methodologies for TSS 

measurements in urban drainage systems are necessary (Bertrand-Krajewski and Muste, 

2007). TSS monitoring of stormwater is aimed to collect the most accurate, reliable and 

representative data, given the technical and resource limitations (Ackerman et al., 2010). 

Measuring stormwater TSS in urban drainage systems with online technologies (e.g. turbidity, 

UV-VIS spectrometry) has been considered as a powerful technique for investigating into the 

spatio-temporal variability and complexity of water quality (e.g. Gruber et al., 2005; 

Hochedlinger et al., 2006; Schilperoort, 2011; Métadier and Bertrand-Krajewski, 2012).  

However, associated calibration, operation and maintenance costs of online probes make 

monitoring of stormwater TSS by traditional sampling campaigns a still widely used approach 

(see Athayde et al., 1983; Saget, 1994; Duncan, 1999; Pitt et al., 2004; Brombach et al., 

2005; Ellis et al., 2006). Therefore, Chapter 2 presents a comparative study with four datasets 

from different urban drainage systems (Chassieu-France, Ecully-France, Berlin-Germany, 

Graz-Austria) that seeks to highlight the benefits of online monitoring in terms of maximizing 

the representativeness (estimated by the Event Mean Concentration - EMC -) of the dynamics 

of TSS, compared to EMCs obtained by four different sampling strategies proposed in the 

literature (e.g. Rossi, 1998; Bertrand-Krajewski et al., 2000; Ackerman et al., 2010). EMCs 

from sampling strategies are simulated by sampling TSS time series (approx. one minute 

time-step, with about one year of data) and calculating a weighted average of the samples by 

their sampling volumes. These “simulated” EMCs are compared to the “reference” EMC 

calculated as a weighted average of the complete time series (flow rate and TSS).  

On the other hand, the main sources of error in any sampling procedure are not only due to the 

heterogeneity in both space and time of the sampling target but also due to the sampling 

technique (Paakkunainen et al., 2007). Therefore, aiming to estimate data quality, intensive 

investigations have also been carried out in the assessment of uncertainties in online and 

laboratory TSS measurements (e.g. Joannis et al., 2008; Métadier and Bertrand-Krajewski, 

2011). However, the influence of field sampling conditions (e.g. sampling intake position, 

sampling flow velocities or sampling pipe orientation) on the representativeness of TSS 

measured values has not been equivalently addressed in the literature (Shelley, 1977; Berg, 

1982; Rossi, 1998; Larrarte and Pons, 2011). Aiming to assess uncertainties in the mean TSS 

concentration due to the influence of sampling intake vertical position and vertical 

concentration gradients in a sewer pipe, Chapter 3 proposes two methods: a simplified method 

(SM) based on a theoretical concentration vertical profile and a time series grouping method 

(TSM). SM is based on flow rate and water depth time series. TSM requires additional TSS 

time series as input data. The analyzed time series for this Chapter 3 are from the urban 

catchment of Chassieu in Lyon, France (2 min time-step and 89 rainfall events measured in 

2007). 
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The objective of this Part 1 within the general frame of the Manuscript is to give a better 

understanding of the influence of elements such as the temporal resolution (Chapter 2) and the 

uncertainty sources (Chapter 2 and Chapter 3) over the TSS data to be used as the main 

modelling input of TSS loads intra-event dynamics, giving potential elements to rethink 

traditional conceptual models (Part 3). 
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CHAPTER 2.  EVALUATION OF PERFORMANCE AND UNCERTAINTIES 

IN STORMWATER SAMPLING STRATEGIES BASED ON FLOW RATE 

AND TOTAL SUSPENDED SOLIDS TIME SERIES 

 

Extended version of:  

Santiago S., Bertrand-Krajewski J.L., Caradot N., Hofer T., and Gruber G. (2017). Evaluation 

of performance and uncertainties in stormwater sampling strategies based on flow rate and 

total suspended solids time series. Proceedings of the 14th International Conference on 

Urban Drainage, Prague, Czech Republic, 10-15 September, 3 p. 

 

2.1  INTRODUCTION 

Accurately assessing stormwater pollutants through monitoring programs is essential for 

operative, legal, political and environmental requirements (Ackerman et al., 2010; Larrarte, 

2008). The strategies used for assessing the variability of water quality by sampling schemes 

(see Athayde et al., 1983; Saget, 1994; Duncan, 1999; Pitt et al., 2004; Brombach et al., 2005; 

Ellis et al., 2006) depend on sampling objectives, legal constraints, jointly with cost and 

logistics considerations. However, the main goal of any specific monitoring campaign is to 

collect the most accurate, reliable and representative data, given the technical and financial 

limitations (Ackerman et al., 2010). Considering that the main sources of error in any 

sampling procedure are due to the sampling technique and the heterogeneity in both space and 

time of the sampling target (Paakkunainen et al., 2007), generalizable and efficient strategies 

for water quality sampling during rainfall events, adaptable to technical and operative 

restrictions, remains a relevant question.  

The sampling strategies referred to in this Chapter 2 are operative rules for sampling Total 

Suspended Solids (TSS) concentrations during rainfall events with an automated sampler or 

grab sampling, aimed at maximizing the representativeness of the dynamics of the pollutants. 

One common indicator of the stormwater pollutant emissions for this purpose is the Event 

Mean Concentration (EMC) (USEPA, 1983; Charbeneau and Barrett, 1998; Carleton et al., 

2001; Kim et al., 2005; Lee et al., 2007), which can be estimated from different sampling 

schemes sampling (e.g. grab, flow weighted, time weighted composite samples) (Lee et al., 

2007). However, the EMCs have shown to be very variable, depending on the specific 

sampling strategy to be used (Lee et al., 2007; Ki et al., 2011).  

Representativeness of the mean of a single set of collected samples over the total mean of a 

complete set is a topic that has been addressed in other disciplines, defined as the mean 

sampling error (e.g. Gy, 1998; Minkkinen, 2004). Pierre Gy’s fundamental sampling theory 

gives a mathematical formalization of the sampling problem, establishing theoretical 

equations for estimating this error (Gy, 1998). This formulation has been applied to 

environmental problems (e.g. Paakkunainen et al., 2007), giving an appropriate frame for 

understanding the different components of errors. Nevertheless, theoretical assumptions and 

required parameters can be hard to measure in practice. Therefore, studies in urban drainage 

have evaluated the performance of different sampling strategies for quantifying pollutant 

concentrations and loads during rainfall events under a more practical point of view (e.g. 

Izuno et al., 1998; Robertson and Roerish 1999; Stone et al., 2000; Ma et al., 2009; 

Ackerman et al., 2010). These approaches have focused on assessing the performance of 
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different sampling strategies by comparing the EMCs obtained by measurements with a 

“reference” (closer to the true value) EMC calculated from numerical estimations (Shih et al., 

1994), Monte Carlo simulations (Richards and Holloway, 1987) or statistical methods (King 

and Harmel 2004; King et al., 2005; Ma et al., 2009). The main challenge in the mentioned 

approaches is that the differences between the EMC obtained from a sampling strategy and 

the “reference” EMC are established by hardly verifiable theoretical assumptions, under the 

absence of sufficient concentration data. Looking to overcome this limitation, further studies 

estimate the “reference” EMC using the outputs of water quality and quantity high temporal 

resolution conceptual models, calibrated with flow rate and water quality measurements 

(Ackerman et al., 2010; Ki et al., 2011). However, conceptual water quality models have been 

also described to have highly uncertain outputs due to uncertainties in model structure, model 

parameters and data (input and output) (Beck, 1987; Bertrand-Krajewski, 2007; Benedetti et 

al., 2013; Dotto et al., 2013), affecting the evaluation of a given sampling scheme, as well.  

Measurement of stormwater quality in urban drainage systems with online technologies (e.g. 

turbidity, UV-VIS spectrometry) has been increasingly used for several purposes (e.g. control 

of urban water systems, modelling, and real time control) (e.g. Ruban et al., 2001; 

Langergraber et al., 2004a; Langergraber et al., 2004b; Hur et al., 2010). In addition, multiple 

authors have reported the benefits of online monitoring in terms of the spatio-temporal 

variability and complexity of water quality (e.g. Gruber et al., 2005; Hochedlinger et al., 

2006; Schilperoort, 2011; Métadier and Bertrand-Krajewski, 2012). Accordingly, online 

monitoring emerges as a promising alternative for estimating the “reference” EMCs and to 

make comparisons across a range of conditions (adapted from Ackerman et al., 2010).  

The objective of the present Chapter 2 is to simulate and evaluate different sampling 

strategies proposed in the literature (e.g. Rossi, 1998; Bertrand-Krajewski et al., 2000; 

Ackerman et al., 2010) by using high temporal resolution flowrate and TSS time series 

(approx. one minute time-step, with about one year of data). EMCs from sampling strategies 

are simulated by sampling TSS time series and calculating a weighted average of the samples 

by their sampling volumes. These “simulated” EMCs are compared to the “reference” EMC 

calculated as a weighted average of the complete time series (flow rate and TSS). The 

approach is carried out with datasets from four urban drainage systems, aiming to compare 

results for different catchments. The approach is undertaken with datasets from four urban 

drainage systems, aimed at comparing the results among different catchments. The cases were 

the following: (i) Berlin, Germany, combined sewer overflow (CSO); (ii) Graz, Austria, 

(CSO); (iii) Chassieu, France, (combined sewer system) and (iv) Ecully, France (separated 

sewer system).  

To our best knowledge, uncertainties and sensitivity analysis in the evaluation of sampling 

strategies have not been extensively addressed in the literature (e.g. Rossi, 1998; King et al., 

2005). Therefore, uncertainties in: (i) sampling volumes, (ii) laboratory values, (iii) online 

measurements (TSS and flow rate) and (iv) beginning/ending of storm events are assessed and 

propagated in the results by Monte Carlo simulations. The effects of the independent 

uncertainty sources over the total uncertainties of performance estimations (errors between 

sampling and on line monitoring EMCs) are estimated by the Sobol’s Sensitivity Index. A 

statistical comparison between the uncertainties of EMCs obtained by sampling and online 

monitoring is also proposed.  
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2.2 MATERIALS AND METHODS 

Data sets 

Four datasets from different urban drainage systems are analyzed. Table 2 shows a summary 

of the main characteristics of the studied catchments and time series. 

Table 2. Summary of characteristics of studied urban catchments and time series  

Location Year 
Monitoring 

point 

area 

(km2) 
% imperv. 

Inhab. 

~ 

avaliable

# rainfall 

events 

time 

series 

time-step 

Land use 
TSS 

measur. 
Source 

Berlín, 

Germany 
2010 CSO* 1 

74 

(0.74 ha) 126000 22 1 min Residential UV-VIS 
Sandoval et 

al., 2013 

Graz, 

Austria 
2009 CSO 3.35 

32.24 

(1.08 ha) 11800 79 

Dry 

weather: 

3 min; 

Wet 

weather: 

1 min 

Residential UV-VIS 
Gamerith, 

2011 

Chassieu, 

Lyon, 

France 

2007 

Separate 

sewer system 

outlet 

1.85 

75 

(1.39 ha) 

 

NA 89 2 min Industrial 
Turbidity 

meter 

Métadier, 

2011 

Ecully, 

Lyon, 

France 

2007 CSO 2.45 

42 

(1.03 ha) 18000 220 2 min Residential 
Turbidity 

meter 

Métadier, 

2011 

*CSO: Combined Sewer Overflow 

The dry and wet weather periods for the cases of Graz and Ecully are defined based on the 

flow rate values. Periods in which the inflows of the CSO-chamber are greater than 120 L/s 

(in Graz) and flow rates are greater than 30 L/s in Ecully are defined as the wet periods.    

Sampling strategies  

The investigated sampling strategies are operational rules for sampling TSS concentrations 

during rainfall events with an automated sampler (jointly with a flowmeter for some cases), 

by using different criteria. Table 3, jointly with the following lines, gives a brief description 

of the sampling strategies evaluated in this Chapter 2 (additional details can be found e.g. in 

Rossi, 1998 or Betrand-Krajewski et al., 2000).  

Strategy cTcSV: Time-paced composite sampling (constant sampling volume): one sample is 

collected based on equally spaced time intervals and sampling volumes are constant. The 

inputs for this strategy are the sampling interval during the rainfall event and the constant 

sampling volume for samples. The sampling volume can be predefined to any constant value 

between 0.02 and 0.9 L (depending on operational constraints, as discussed below) (e.g. 

sampling each 10 min with a sampling volume of 0.4 L).  

Strategy cTpQ: Time-paced composite sampling (sampling volume proportional to 

instantaneous flowrate): one sample is collected based on equally spaced time intervals and 

sampling volumes are pre-set as proportional to the instantaneous flowrate measured at the 
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sampling time-step. The sampling volumes are then proportionally selected: the minimum 

flowrate value registered during a rainfall event will then correspond to the minimum 

sampling volume (0.02 L), as the maximum flowrate will be sampled with a volume of 0.9 L. 

Therefore, in addition to the constant sampling interval, the minimum and maximum flowrate 

values during the event are then required as inputs (e.g. sampling each 10 min with a 

sampling volume of 0.2 L, whenever the instantaneous flowrate is 0.2 m
3
/s). 

Strategy cTpV: Time-paced composite sampling (sampling volume proportional to runoff 

volume between two samples): one sample is collected based on equally spaced time intervals 

and sampling volumes are pre-set as proportional to the runoff volume cumulated since the 

last sample. The sampling volumes are then proportionally selected: the minimum volume 

between two samples during a given rainfall event will then correspond to the minimum 

sampling volume (0.02 L), and the maximum runoff volume between two samples will be 

sampled with a volume of 0.9 L. Therefore, in addition to the constant sampling interval, the 

minimum and maximum volumes between two samples during the event are then required as 

inputs (e.g. sampling each 10 min with a sampling volume of 0.1 L, whenever the runoff 

volume between samples is of 10 m
3
). 

Strategy vTcV: Volume-paced composite sampling: for this strategy, the automated sampler 

takes a sample at pre-set runoff volume (rather than sampling interval), during a given rainfall 

event. This will lead to have non-equally spaced time intervals between samples. The 

sampling volume can be predefined to any constant value between 0.02 L and 0.9 L 

(depending on operational constraints, as discussed below) as for the case of strategy cTcSV. 

Thus, the inputs for this strategy are the constant sampling volume and the pre-set runoff 

volume (constant values) (e.g. constant sampling volume of 0.4 L, for each 10 m
3 

of runoff 

between samples).  

Table 3. Sampling strategies inputs and description 

Name Sampling time 

intervals 

Sampling volume Runoff volume 

between samples 

Input parameters 

cTcSV constant constant variable Δt (constant sampling time interval) 

cTpQ constant f(flow rate) variable Δt (sampling time interval); min(flow rate) and 

max(flow rate) 

cTpV constant f(RV*) before last 

sample 

variable Δt (sampling interval); min(RV*) and 

max(RV*) between sampling 

vTcV variable constant constant Sampling intervals based on RV* 

*RV: runoff volume between samples 

For all the sampling strategies, the value of 0.02 is selected as the minimum sampling volume 

for which a TSS laboratory test can be conducted. As the sampling bottles have a capacity of 

1 L, the 0.9 L is selected as the maximum sampling volume with the purpose of leaving a 

security margin, in case of e.g. spilling some amount of the sample during the handling 

process.  
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Simulating sampling strategies 

Given the fact that comparing the results of simultaneous campaigns with several 

autosamplers (one for each strategy with different inputs) might be an unfeasible alternative 

(in economic and operative terms), the approach herein proposed is to use the TSS and flow 

rate time series to simulate the EMCsim that would have been obtained by different sampling 

strategies. Figure 4 illustrates how the TSS time series is sampled by means of sampling 

intervals ∆t, assigning a TSSi value (i equal to the sampling time-step) and a sampling volume 

SVi to each sampling bottle, as a function of the sampling strategy. The EMCssim is calculated 

as a weighted average of the “sampled” TSSi values by the sampling volumes SVi (Figure 4). 

This calculation is equivalent to grab multiple samples and mix them in a composite 20 L 

sample jar (the size of 20 L is set from standard field conditions). For example, in Figure 4 the 

sampling intervals are constant during the rainfall event (time-paced strategies). The EMCssim 

are simulated for each sampling strategy, including different inputs (Table 3). In addition, the 

“reference” EMCref is calculated by using the complete pseudo-continuous time series (one or 

two minute time-steps) of Q and TSS (Figure 5). EMCref(j) and EMCsim(j) are calculated for 

each rainfall event j (from 22 to 220 rainfall events depending on the dataset). 
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Figure 4. Procedure for obtaining the EMCsim from grab sampling (SV: sampling volume; TSS: Total 

Suspended Solids Concentration) with strategy cTcSV. 

Figure 5. Procedure for obtaining the EMCrefs from time series 
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The main hypothesis in this approach is that the TSS and Q time series are assumed to be the 

“reference” values, without any systematic error in the measurements. To support this fact, 

intensive research had explored the benefits and limitations of water quality and quantity 

online measurements, compared to traditional TSS laboratory tests (Bertrand-Krajewski et al., 

2007b; Torres and Bertrand-Krajewski, 2008b; Winkler et al., 2008).  

Different sampling intervals (e.g. from 1 min to 60 min) are evaluated for strategies with 

constant sampling intervals Δt (i.e. strategies cTcSV, cTpQ and cTpV). However, based on 

recommendations from Ackerman et al. (2010) and field experience, the minimum sampling 

interval Δt is recommended to be of 5 min. For applying proportional sampling volume SV 

strategies (cTpQ and cTpV), the minimum and maximum Q values of an event should be 

known in advance. In practice, these values can be estimated only after the end of rainfall 

event. A simple solution for the purposes of this Chapter 2 is to assume that the bottles are 

sampled with the highest possible sampling volume (0.9 L). Afterwards, the corresponding 

sampling volume SV from each bottle is corrected by using the already known minimum and 

maximum flow rate value, before mixing the sampling bottles into the 20 L jar (Figure 4). The 

performance of strategy vTcV (variable sampling intervals) is evaluated for several runoff 

volumes RV, from 5
th

 percentile to 95
th

 percentile of the total runoff volumes during the 

rainfall events. The mean ∆t is calculated in the vTcV strategy for comparison with constant 

sampling intervals Δt strategies (cTcSV, cTpQ and cTpV).   

Performance indicators 

The estimation of the performance of a sampling strategy could be assessed in terms of the 

variability and repeatability of the sampling error across the different rainfall events (adapted 

from Gy, 1998). Therefore, the following performance indicators are considered: (i) the 

residuals_vector for each rainfall event (Eq 1) (bias estimation) and (ii) the Mean Squared 

Relative Error (MSRE) for all rainfall events (accuracy estimation) (Eq 2).  

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠_𝑣𝑒𝑐𝑡𝑜𝑟(𝑗) = 𝐸𝑀𝐶𝑡𝑟𝑢𝑒(𝑗) − 𝐸𝑀𝐶𝑠𝑖𝑚(𝑗)                               
 

Eq 1 

 

𝑀𝑆𝑅𝐸 =
√∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠(𝑗)2𝑁

𝑗=1

𝑁 ∙ 𝑚𝑒𝑎𝑛(𝐸𝑀𝐶𝑡𝑟𝑢𝑒)
 

 

 

Eq 2 

 

The residuals_vector has a length equal to the number of rainfall events N and can be 

considered as a bias estimation (over or under estimation of the EMC), as the mean of this 

vector should be significantly close to zero for guaranteeing a non-biased estimation over all j 

rainfall events (adapted from Gy, 1998).  

On the other hand, the MSRE can be defined as the standard deviation of the sampling error, 

which is related to the accuracy (MSRE) of a given sampling strategy (Gy, 1998; 

Paakkunainen et al., 2007). The representativeness of a sample is a function of the expectation 

and the standard deviation of the sampling error (Gy, 1998). Therefore, Eq 1 and Eq 2 are 

proposed to describe the representativeness of a sampling strategy. In addition, the 

uncertainties in the MSRE are considered as a complementary indicator of the performance of 

a sampling strategy. This indicator is estimated by the Monte Carlo method, propagating the 

uncertainty sources over the MSRE (see Table 4).  
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The standard uncertainty u(x) of the random variable x can be estimated by the Law of 

Propagation of Uncertainties LPU, in which the condition of normality (or at least symmetry 

of the distribution) is necessary. In those cases the expanded uncertainty can be calculated as  

I = k · u(x), where k is the enlargement factor that guarantees a desired coverage interval (e.g. 

k = 2 for a 95 % coverage when the distribution is normal) (ISO, 2009). Whenever the 

normality or even symmetry of the distribution is not verified (especially over the propagated 

distributions), the expanded uncertainty CI(x)min95 % can be calculated by the Monte Carlo 

method as the minimum interval formed by a couple of points (a, b) that can cover 95 % of 

the distribution of x (ISO, 2009). The standard uncertainties u(x) from Table 4 are included in 

the analysis as the standard deviation of a normal distribution for each of the variables used in 

the calculation of the EMCs and MSREs (Table 4). The propagation of uncertainty sources 

over EMCs and MSREs is calculated in their expanded form as CI(EMC)min95% and 

CI(MSRE)min95% respectively. The CI(MSRE)min95% value represents the influence of 

uncertainty sources (Table 4) over the variability of the MSRE (Eq 2), as a total error 

indicator.  

Regarding the calculation of the CI(MSRE)min95% (function of CI(EMCref)min95% and 

CI(EMCsim)min95% values), six uncertainty sources are considered, which are listed in Table 4 

(adapted from Rossi, 1998). Uncertainties in sampling intake position and time shift due to 

the pumping operation are not considered due to the lack of information (sources 7 and 8 in 

Table 4).  

Table 4. Uncertainty sources description 

 Uncertainty 

source code 

Description Standard 

uncertainty value 

u(x) 

Influence on 

EMCsim 

Influence 

on 

EMCref 

Probability distribution 

1) u(Qts) 

 

uncertainty of Q 

time series 

Q online 

measurements 

uncertainties (site 

dependent) 

sampling 

volumes (cTpQ) 

(RVts) 

(used in 

all 

strategies) 

N ~ (Q ; u(Q)) 

2) u(samplV) 

 

uncertainty of 

sampling 

volumes 

4.5 % (LGCIE, 

Exera report) 

sampling volume 

in each strategy 

no effect N ~ (SV ; 0.075·SV) 

3) u(start/end) 

 

start/ending of 

rainfall event, it 

varies the 

delimitation of 

D/W periods 

Beginning 5 % and 

ending 7.5 % of the 

rainfall duration 

(Métadier, 2011) 

directly; for 

vTcV it affects 

the definition of a 

Δt related to a 

given runoff 

volume 

direct 

effect 

Beginning: 

tstart + 

U~ [-0.05·(tend- tstart) ; 0.05·(tend- tstart)] 

 

Ending: 

tend +                                                    

U~ [-0.075·(tend- tstart) ; 0.075·(tend- tstart)] 
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 Uncertainty 

source code 

Description Standard 

uncertainty value 

u(x) 

Influence on 

EMCsim 

Influence 

on 

EMCref 

Probability distribution 

4) u(TSSsampl) 

 

uncertainty 

related to the TSS 

obtained from the 

sampling strategy 

7.5 % of the value 

(TSS standard test 

uncertainty) 

(LGCIE, Exera 

report) 

directly no effect N ~ (TSS ; 0.075·TSS) 

5) u(TSSts) 

 

uncertainty of 

TSS time series 

TSS online 

measurements 

uncertainties 

(site dependent) 

no effect direct 

effect 

N ~ (TSS ; u(TSS)) 

6) u(RVts) 

 

uncertainty 

related with 

runoff volume 

from Q time 

series 

Q online 

measurements, 

including 

uncertainty of 

starting/ending of 

events 

sampling 

volumes (cTcSV, 

cTpV and vTcV) 

direct 

effect 

propaged from distributions 1 and 4 

7) u(Sampl. 

position) 

 

uncertainties due 

to sampling 

intake position 

neglected for this 

work 

NA NA NA 

8) u(Time-

shift) 

 

uncertainty due to 

the time shift 

given by the 

pumping 

operation 

neglected for this 

work 

NA NA NA 

For clarifying, the source of uncertainty u(RVts) comes from an instantaneous runoff volume 

time series (RVts). This series is calculated from the flow rate time series Q, including 

uncertainties of u(Qts) but also of u(start/end), with the purpose of establishing the sampling 

volumes for cTcSV, cTpV and vTcV strategies. Each uncertainty source is propagated over 

the EMCsim, EMCref, MRSE and residuals_vector (Eq 1 and Eq 2) by Monte Carlo 

simulations, including the proposed probability distributions (Table 4). The probability 

distribution of uncertainty source 3 (Table 4) is a uniform distribution U that represents the 

uncertainties in the moment of beginning tstart and ending tend of a rainfall event (with duration 

tend- tstart).   

The uncertainty related to the TSS sampling u(TSSsampl) is different from the uncertainties 

in the TSS from the time series u(TSSts) (Table 4, source 4 and 5 respectively). The u(TSSts) 

are related to the TSS measurement technology (Turbidity or UV-VIS spectrometry), with its 

calibration procedure. Both values are assumed to be measured with a different measurement 

approach (laboratory traditional test and online monitoring) (Figure 4 and Table 4). The 

Sobol’s sensitivity total index (SSI) estimation proposed by Glen and Isaacs (2012) is applied 

to quantify the influence of uncertainty sources (Table 4) over the total uncertainty of MSRE 

values, CI(MSRE)min95%. See a detailed description of the application of the methodology in 

Appendix 2.    

Iman and Conover (1980) propose the Latin Hypercube Sampling LHS, as an extension of the 

Monte Carlo method, which can lead to equivalent results with a lower number of 

simulations, by better covering the probability distribution domain. The LHS is tested against 
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the traditional Monte Carlo approach in punctual cases, reporting suitable results in terms of 

diminishing the computational effort. For time series analysis, some authors have pointed out 

that the correlation effect of time series (autocorrelation or variogram) can increase the values 

of propagated uncertainties over time series calculations (Bertrand-Krajewski and Bardin, 

2002). Therefore, the correlation matrix of the time series could be included in the LHS as the 

autocorrelation matrix, in order to consider this effect (adapted from McMurry and Politis, 

2010). However, the autocorrelation matrix has shown not to be a sufficient estimator of the 

time series correlation matrix (Wu and Pourahmadi, 2009). This problem is still subject of 

intensive research by multiple authors (e.g. Xiao and Wu, 2012; Xue and Zou, 2012). For 

instance, the time series are going to be considered as merely observations, without an auto-

correlated underlying process (correlation matrix equal to identity matrix in the LHS).  

Further comparisons are undertaken between CI(EMCref)min95% and CI(EMCsim)min95%  by the 

use of statistical methods (t-test or Wilcoxon) to show significant differences between 

uncertainties in EMC obtained by online monitoring or using a simulated sampling scheme. 

The selection of the t-test or Wilcoxon test is dependent on the normality of the 

residuals_vector (EMCref - EMCsim) (Shapiro Wilk test p-value > 0.05 for normally 

distributed samples). 

2.3 RESULTS AND DISCUSSION   

With the purpose of testing the efficiency of LHS against traditional Monte Carlo Method, 

and defining as well a representative number of simulations, the convergence of the results 

obtained by the two approaches is checked for some cases e.g. Chassieu, cTpQ strategy with a 

15 min sampling interval (Figure 6). The MC method (left) does not show stable results of 

CI(MSRE)min95% for a number of simulations lower than 400. These results are in agreement with 

previous studies (e.g. Helton and Davis, 2003), where the LHS approach has reported 

satisfactory results for assessing and propagating uncertainties more efficiently (lower number 

of simulations for computing the same MSRE values) in comparison to the traditional Monte 

Carlo method. From results in Figure 6, jointly with the maximum computational capacity, 

the number of simulations is defined as 200 for Berlin, Chassieu, Graz and Ecully, by using 

the LHS approach.  

 
Figure 6. Variability of MSRE values (CI(MSRE)min95%) against different number of simulations (x-axis) for 

strategy cTcSV with sampling intervals of 15 min in Chassieu (left: LHS, right: traditional Monte Carlo 

simulations). 
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The calculations are undertaken for the datasets of Berlin, Chassieu, Graz and Ecully. 

Different criteria are evaluated for each of the studied datasets and strategies: (i) performance 

of each strategy (sampling error MSRE and CI(MSRE)min95%) (Eq 2), (ii) residuals_vector (Eq 

1) (iii) Sobol’s Sensitivity Index SSI and (iv) statistical comparison between 

CI(EMCsim)min95% and CI(EMCref)min95%. Different sampling intervals are considered from 1 

min to 60 min (Graz, Chassieu and Ecully) and from 1 min to 30 min (Berlin). Only even 

sampling intervals (i.e. 2 min, 4 min, etc.) are evaluated for the case of Chassieu and Ecully, 

as the time-step of the data is 2 min. 

Considering that the maximum volume of the composite sample jar is set to 20 L, MSRE 

values increase for short sampling intervals, as the composite sample jar of 20 L is full before 

the end of the event (especially for rainfall events with high volumes). This fact is considered 

as well in constant sampling volume SV strategies (i.e. cTcSV and vTcV) by setting a 

constant SV of 0.4 L. For cTpQ and cTpV, SV are assigned from 0.02 L to 0.9 L, depending 

on the input of each sampling strategy (Table 3). Rainfall events for a given strategy are not 

included in the calculations if: (i) the sampling interval is longer than the duration of the 

events (for cTcSV, cTpV and vTcV) or (ii) the total runoff volume RV set between samples is 

greater than the total runoff volume of the rainfall (for vTcV). Therefore, the following 

number of rainfall events is used for each dataset in vTcV strategy, as a function of the 

sampling runoff volume between samples RV (Table 3).  

- Berlin: 22 events for RV > 500 m
3
 (mean sampling intervals of 5 min) decreasing until 9 

events for RV = 4500 m
3
 (mean sampling intervals of 5 min).  

- Chassieu: 89 events for RV > 280 m
3
 (mean sampling intervals of 15 min) decreasing until 

37 events for RV = 1700 m
3
 (mean sampling intervals of 60 min).  

- Graz: 79 events for RV > 100 m
3
 (mean sampling intervals of 5 min) decreasing until 52 

events for RV = 1300 m
3
 (mean sampling intervals of 60 min).  

- Ecully: 220 events for RV > 1x10
5 

m
3
 (mean sampling intervals of 5 min) decreasing until 

100 events for RV = 12x10
5 

m
3
 (mean sampling intervals of 60 min). 

Results about MSRE (solid lines) and CI(MSRE)min95% (colored bands) are shown for 

sampling time intervals from 1 to 60 min on the lower x-axis (strategies cTcSV, cTpQ and 

cTpV) (Figure 7). The upper x-axis shows the different runoff volumes that are used to 

evaluate the vTcV strategy, with the corresponding mean sampling time intervals on the lower 

x-axis (Figure 7). The sampling error MSRE and its uncertainty CI(MSRE)min95% increase for 

greater sampling interval, evaluated over the different rainfall events and datasets.  

In Berlin (Figure 7a), the strategies cTpQ and cTpV show the best performance, with similar 

results (MSRE 7 % to 25 %, CI(MSRE)min95% lower than 20 %). The strategy vTcV shows the 

lowest performance with the highest MSRE and CI(MSRE)min95% values. In Chassieu (Figure 

7b), CI(MSRE)min95% values are lower for strategies cTcSV and vTcV, and a lower MSRE is 

observed for strategy cTpV for all sampling intervals. The cTpQ strategy is particularly 

sensible to flow rate outliers, as the sampling volumes are obtained by a weighted average of 

instantaneous flow rate values. Therefore, the CI(MSRE)min95% values higher than 100 % for 

strategy cTpQ could be related to potential outliers in the flow rate time series. In Graz 

(Figure 7c), no strategy outperforms the other ones. CI(MSRE)min95% values are similar for all 

sampling strategies and sampling intervals, and generally lower than 15 %. In Ecully (Figure 
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7d), the strategy cTpV shows the lowest MSRE and CI(MSRE)min95% values (resp. < 20 % and 

from 1 % to 20 %) for all sampling intervals). 

 
Figure 7. MSRE (solid line) and CI(MSRE)min95% (colored bands) for different sampling time intervals in 

strategies cTcSV (black), cTpQ (red) and cTpV (blue) on the lower x-axis and different sampling volumes in 

strategy vTcV (green) on the upper x-axis, for a) Berlin, b) Chassieu, c) Graz and d) Ecully. 

For Berlin and Chassieu, the 20 L composite sample jar is filled before the end of many 

events for sampling intervals shorter than 3 and 5 min respectively (resulting in higher MSRE 

values for shortest sampling intervals). These results, along with field experience and usual 

recommendations for sampling strategies, indicate that less than 5 min time interval is not 

appropriate from an operational point of view. Therefore, the best sampling strategy might be 

cTpV (or cTpQ as well, but being aware of its sensitivity to unusual flow rate values), using 

sampling intervals of about 5 min.  

For Graz and Ecully, the constraint regarding the maximum composite sample jar volume has 

an impact for sampling intervals lower than 10 min. Therefore, for any sampling strategy to 

be implemented in these sites, sampling intervals are recommended to be about 10 min 

(MSRE of 10 % and 20 % respectively). Differences between the recommendations about the 

optimal sampling time interval for Berlin and Chassieu (5 min), compared to Graz and Ecully 

(10 min), can be related to the size of the catchments (100 and 185 ha for Berlin and 

Chassieu, compared to 335 and 245 ha for Graz and Ecully) (Table 2). Graz and Ecully 
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produce runoff volumes over longer durations leading to more frequent overfilling of the 

maximum 20 L jar. 

For all cases (Berlin, Chassieu, Graz and Ecully), the strategy cTpV delivers the most 

representative results in terms of performance MSRE and uncertainties CI(MSRE)min95%. 

Previous studies (e.g. Leecaster et al., 2002; Ma et al., 2009) also concluded that weighing the 

sampling volumes based on the runoff volume can bring up the most accurate and precise 

estimations of EMC. The constant sampling time intervals providing the best performance are 

about 5 min for the smaller catchments (Berlin and Chassieu) and about 10 min for the larger 

ones (Graz and Ecully). The sampling errors (MSRE) for these recommended sampling 

intervals range from 7 % (Berlin) up to 20 % (Chassieu and Ecully), with 95 % coverage 

intervals CI(MSRE)min95% of about 5 %. If appropriate sampling intervals are selected (about 

10 min), the cTcSV strategy can be a feasible alternative in absence of a flow-meter, with 

acceptable MSRE (lower than 20 %) and CI(MSRE)min95% (lower than 10 %). The operative 

restriction of a maximum volume of 20 L for the composite sample jar has a significant 

influence on the selection of the best sampling strategy, especially for large catchments.  

The residuals_vector between EMCref and EMCsim are calculated for each rainfall event (to be 

called EV) (Figure 8) including the same sampling intervals and runoff volumes between 

samples RVs used in the results of the MSRE estimations (lower and upper x-axis, 

respectively). In addition, uncertainties are propagated into the residuals_vector (Eq 1) by the 

LHS method, including the uncertainty sources defined in Table 4 (to be called MC) (Figure 

8). An asymmetry in the distribution of the residuals_vector towards 0 mg/L is an indicator of 

systematic over or underestimations of the EMC. Whenever at least half of the events are over 

or under-estimated, the strategy can be considered to be biased.  

The strategy cTcSV applied to Chassieu and Ecully catchments shows an underestimation of 

the EMC (positive signs of the residuals_vector) for 75 % of the rainfall events, with 

sampling intervals greater or equal to 4 min and 8 min, respectively. One particularity of the 

TSS pollutographs during a rainfall event is that the amount of TSS values lower than the 

EMCref is higher than the amount of TSS values higher than the EMCref (median TSS lower 

than mean TSS). The bias reported for this case is explained by the fact that the cTcSV 

strategy will tend to reflect the natural asymmetry of the TSS values distribution, as flow rate 

information is not considered. Gy (1998) envisaged similar conclusions, demonstrating 

mathematically that non-weighing sampling strategies (e.g. cTcSV) are less representative 

than weighing strategies (cTpQ and cTpV), under certain theoretical assumptions over the 

sampled signal (e.g. autocorrelated series). Other studies such as Leecaster et al. (2002) report 

similar bias for non-flow rate weighted strategies with site measurements. 

Analogous results are delivered for strategies cTpQ, cTpV and vTcV in Chassieu and Ecully, 

using sampling intervals greater than 30 min (underestimation of the EMC for 75 % of the 

rainfall events). These long sampling intervals lead to take more samples from the ending of 

the rainfall event (after the peak). This part of the pollutograph is usually longer and contains 

a greater amount of TSS values lower than EMCref. Therefore, the EMCsim is more likely to be 

calculated with the lowest values of the pollutograph, independently of the weighting 

sampling volumes SV (Figure 4).  
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Figure 8. residual_vector (EMCref – EMCsim) Eq 1 (EV) with propagated uncertainties (MC) for different 

sampling time intervals in strategies cTcSV, cTpQ and cTpV and different sampling volumes in strategy vTcV 

for Berlin, Chassieu, Graz and Ecully.  

The cTpQ and cTpV strategies show systematic overestimations of the EMC (negative signs 

of the residuals_vector) for more than 50 % of the events in Chassieu and Ecully, considering 

sampling intervals lower than 4 min and 8 min, respectively. The 20 L composite sample jar 

is filled during the first part of the event for short sampling intervals, leading to amplify the 

sampling in the zone before the peak of the pollutograph. Indeed, the majority of the TSS 

values higher than EMCsim are located at the beginning of the event. The residuals_vector (Eq 

1) remained towards zero for the cases of Berlin and Graz. The differences in the results 

among the different catchments can be attributed to facts such as the size of each basin, 

physical characteristics and type of hydrosystem (Table 2). 

The variability of the residuals_vector (Eq 1) becomes higher for greater sampling intervals in 

all sampling strategies in all datasets. This can be expected from results in Figure 8 (MC), as 

the mean difference between EMCsim and EMCref becomes higher due to a lower amount of 

values used to calculate the EMCsim (sampling interval size). This variability increases as well 

when uncertainties are taken into account by the LHS method (Figure 8). 
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However, the percentages of over or underestimation remain constant compared to the EV 

scenario. For Berlin and Graz, although the variability of the distribution in the 

residuals_vector increased for higher sampling intervals, no asymmetry is noticed in the 

distributions. 

The results of Sobol’s total Sensitivity Index (SSI) are shown in Figure 9 for each of the six 

uncertainty sources. Including the results for all the strategies, the following generalizations 

can be observed, independently of the selected Δt (cTcSV, cTpQ and cTpV) or RV (vTcSV): 

(i) the most important source of uncertainty in CI(MSRE)min95% comes from the TSS 

laboratory values u(TSSsampl), (ii) the uncertainties related to the D/W weather delimitation 

u(start/end) and sampling volumes u(samplV) have an important effect over CI(MSRE)min95% 

for constant sampling interval Δt strategies (cTcSV, cTpQ and cTpSV) and (iii) the volume 

time series uncertainty u(RV) has an important influence over CI(MSRE)min95% in strategy 

vTcV. Indeed, the importance of u(TSSsampl) over CI(MSRE)min95% remains systematically 

higher than for u(TSSts), for all strategies. This can be explained from the amount of TSS data 

used to calculate the EMCref, which is necessarily higher than for the EMCsim, and therefore 

EMCsim might be more sensitive to variations in the TSS values than EMCref. These results 

may encourage researchers and practitioners to find adaptable methodologies for delimiting 

the beginning and ending of rainfall events, especially for applying sampling schemes based 

on time intervals. TSS laboratory values is the main uncertainty source for estimating the 

EMC by sampling strategies, therefore special attention should be given to laboratory and 

samples handling protocols.    
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Figure 9.  Sobol’s Total Index for sensitivity analysis considering uncertainty sources in Table 4 for different 

sampling time intervals in strategies cTcSV, cTpQ  and cTpV and different sampling volumes in strategy vTcV 

for Berlin, Chassieu, Graz and Ecully.  

The standard uncertainties of the EMCs obtained from time series CI(EMCref)min95% are 

compared with the uncertainties of the EMCs calculated by different sampling strategies and 

sampling intervals CI(EMCsim)min95% (Figure 10). The notation can be read as follows: strategy 

and the sampling interval, e.g. cTcSV_5 = cTcSV strategy with 5 min sampling interval. 
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Berlin: 22 events  

 

Chassieu: 89 events 

 

Graz: 79 events events  

 

 

Ecully: 220 events 

 

Figure 10. Comparison of CI(EMCref)min95% and CI(EMCsim)min95% values obtained in all rainfall events for 

different sampling strategies. 

Statistical tests show that there is a significant difference between the uncertainties of 

CI(EMCref)min95% and CI(EMCsim)min95% (t-test or Wilcoxon with p-value < 0.05) for all 

datasets (except for Berlin with sampling intervals lower than 20 min). This implies that the 

uncertainties in the estimation of the EMCs by online measurements (turbidity or UV-VIS 

spectrometry) are significantly lower than uncertainties in the estimation of the EMC by 

sampling strategie (Wilcoxon test, p-value < 0.05). Furthermore, uncertainties of the EMC 

increases as longer sampling intervals are used. These results show up one of the potential 

advantages given by online monitoring compared to traditional sampling schemes and 

confirms the necessity of selecting an appropriate sampling interval for any sampling strategy 

to be adopted. Practitioners should bear in mind that EMCs estimated by a sampling strategy 

tends to be more uncertain than the EMCs obtained by online monitoring.  
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2.4 CONCLUSIONS 

Different sampling strategies during rainfall events are simulated and evaluated by means of 

online TSS water quality and flow measurements in four international catchments (Berlin, 

Chassieu, Graz and Ecully). The average relative sampling error and the residuals distribution 

are estimated from EMCs simulated by strategies, compared to EMCs obtained by the 

complete time series from online monitoring of various rainfall events. The uncertainties are 

propagated by the Monte Carlo method using Latin Hypercube Sampling (LHS) and the 

sensitivity of the results to the different uncertainty sources is assessed by Sobol’s Sensitivity 

Indices. For the studied datasets (Berlin, Chassieu, Graz and Ecully), a sampling volume 

proportional to runoff volume between two samples, with constant sampling intervals, 

strategy (cTpSV), delivers the most representative results in terms of accuracy (MSRE), bias 

(residuals vector) and uncertainties propagation of the errors in the estimation of EMCs. 

Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 

185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with average 

sampling errors between 7 % and 20 % and uncertainties in sampling errors of about 5 %, 

depending on the sampling interval. 

From Sobol’s total sensitivity index analyses, it can be stated that special attention should be 

paid to field sampling procedures and laboratory analyses (especially for larger sampling 

intervals), as uncertainties related to sampling volumes and TSS concentrations seemed to be 

highly influential on uncertainties of EMCs. In addition, uncertainties in the average relative 

sampling errors in the estimation of the EMCs are also very sensitive to uncertainties in the 

beginning and ending of rainfall events. Therefore, further investigations towards the 

assessment of this uncertainty source (in terms of water quantity and quality parameters) can 

be strongly recommended (see Métadier, 2011; Sandoval and Torres, 2013). Statistical tests 

indicate that the uncertainties of EMCs obtained from time series are significantly lower 

(Wilcoxon test, p-value < 0.05) than the uncertainties of EMCs obtained by sampling 

strategies.   
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CHAPTER 3. INFLUENCE OF SAMPLING INTAKE POSITION ON 

SUSPENDED SOLIDS MEASUREMENTS IN SEWERS: TWO PROBABILITY 

/ TIME-SERIES BASED APPROACHES 

 

Published in:  

Sandoval, S., Bertrand-Krajewski, J.-L., (2016). Influence of sampling intake position on 

suspended solids measurements in sewers: two probability / time series based approaches. 

Environmental Monitoring and Assessment, 188, 347. doi: 10.1007/s10661-016-5335-y.  

 

3.1 INTRODUCTION 

Total Suspended Solids (TSS) measurements in urban drainage systems are often required for 

scientific, legal, environmental and operational reasons, as particulate matter constitutes a 

major source of surface water contamination (Ashley et al., 2004; Chebbo and Gromaire, 

2004). However, the reliability of TSS measurements strongly depends on the quality of the 

collected samples, which should be representative of real field conditions in the monitored 

sewer pipe (Larrarte, 2008; Métadier and Bertrand-Krajewski, 2012). Therefore, appropriate 

data acquisition and validation methodologies for TSS measurements in urban drainage 

systems are required (Bertrand-Krajewski and Muste, 2007). Aiming to estimate data quality, 

intensive investigations have been carried out towards assessment of uncertainties in online 

and laboratory TSS measurements (e.g. Joannis et al., 2008; Métadier and Bertrand-

Krajewski, 2011). However, the influence of field sampling conditions (e.g. sampling intake 

position, sampling flow velocities or sampling pipe orientation) on the representativeness of 

TSS measured values has not been equivalently addressed in the literature (Shelley, 1977; 

Berg, 1982; Rossi, 1998; Larrarte and Pons, 2011). 

Indeed, one specific uncertainty source in TSS measurements lies in the sampling intake 

position through the sewer cross section (Shelley, 1977; Rossi, 1998; Kafi-Benyahia et al., 

2006; Larrarte, 2008; Larrarte and Pons, 2011), which is frequently neglected by implicitly 

assuming that point measured values are equal to the cross section mean concentration. This 

hypothesis seems to be valid in sewers with high enough flow velocities (Kafi-Benyahia et 

al., 2006; Larrarte, 2008), where fully mixed flow conditions can be guaranteed (Raudkivi, 

1998). However, TSS vertical gradients might be non-negligible under other hydrodynamic 

conditions corresponding to lower velocities (Verbanck, 1993, 1995; Ashley and Crabtree, 

1992; Ashley et al., 1994; Ristenpart, 1995; Ristenpart et al., 1995; Ahyerre, 1999). In this 

case, the difference between point measured and cross section mean concentrations can be 

therefore attributed to: (i) variation of the position of the cross section mean concentration 

linked to vertical and horizontal concentration profiles due to hydrodynamics, (ii) variations 

of the sampling intake position through the cross section due e.g. to oscillations of the 

sampling tube or to other experimental constraints (Larrarte and Pons, 2011) and (iii) 

uncertainties in physical variables (e.g. flow rate measured at each time-step, roughness 

coefficient, geometric properties). 

In this Chapter 3, two methods are presented and applied comparatively to a case study in 

order to evaluate how the position of the sampling intake tube, the vertical concentration 

profile and other uncertainty sources may lead to over- or underestimation of the cross section 
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mean TSS concentration. More specifically, the methods allow estimating the probability that 

sampling TSS concentrations at a random point of the sewer vertical cross section (for given a 

flow rate) leads to over- or underestimation of the true vertical mean TSS concentration. This 

information can then be used to correct possible errors in measured TSS data. 

 

3.2 MATERIALS AND METHODS 

Data set 

The simplified method (SM) is applied with flow rate Q (m
3
/s) data determined from water 

depth H (m) and mean flow velocity U (m/s) measurements. The time series method (TSM) in 

addition includes TSS concentrations (mg/L) estimated from online turbidity measurements. 

The experimental time series were measured with a 2 minute time step for 89 rainfall events 

in 2007 in Chassieu, France (see details in Chapter 1). For SM, information and data include: 

(i) the time series of the wet cross section A (m
2
) derived from the H time series, (ii) the time 

series of the wet perimeter P (m) derived from the H time series, (iii) the sewer pipe slope S 

(m/m) and (iv) the settling velocity ws (m/s) of suspended solids (details about settling 

velocity measurements are given in Torres and Bertrand-Krajewski, 2008a and Chebbo and 

Gromaire, 2009). Standard uncertainties in all above data are also needed for calculations. 

Input data and their uncertainties are given in Table 5.  

Table 5. Input data and their standard uncertainties. 

Input variable Input value Source Standard uncertainty/ pdf Source 

Diameter D �̅� = 1.6 m Métadier (2011) u(D) = 0.002 m Muste et al. 

(2012) 

Settling velocity ws 𝑤𝑠̅̅ ̅ = 2.8e-4 m/s Torres (2008) u(ws) = 0.13 𝑤𝑠̅̅ ̅ 
normally distributed 

Torres (2008); 

Torres and Bertrand-

Krajewski (2008a) 

Pipe slope S 𝑆 ̅ = 0.01 m/m Métadier (2011) u(S) = 0 m/m Métadier (2011) 

Water depth H 𝐻 ̅̅ ̅ = H m Métadier (2011) u(H) = 0.0075 m  

normally distributed 

Métadier (2011) 

TSS 𝑇𝑆𝑆 ̅̅ ̅̅ ̅̅  = TSS mg/L Métadier (2011) Variable over 

the time series 

Métadier (2011) 

 

Simplified method (SM) 

The field conditions in which the samples are taken in the sewer pipe and the TSS 

concentration profile are illustrated in Figure 11 and Figure 12, where z (m) is the sampling 

intake depth, H (m) is the total water depth, 𝑦𝑐 (m) is the depth corresponding to the vertical 

mean concentration, Ch (mg/L) is the concentration at depth h (m) above the invert, Ca* 

(mg/L) is the concentration at the reference depth a* (m) above the invert. 
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Figure 11. Scheme of the concentration profile and the sampling tube. 

..  

Figure 12. Sampling tube in the Chassieu sewer. Left: general view with the sampling tube located just upstream 

a Venturi flume created to ensure a minimum water level for sampling; Right: detail of the lower part of the 

sampling tube immersed in the flow. 

Previous studies (Coleman, 1982; Verbanck, 2000) propose to represent the vertical 

concentration profile in a pipe with the following equation: 

𝐶ℎ
𝐶𝑎∗

= (
ℎ

𝑎∗
)
−η

 

 

 

 

 Eq 3 
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where 𝜂 =  
𝑤𝑠

𝜅𝑈∗
 (-) is the Rouse number, Ch (mg/L) is the concentration at depth h (m) above 

the invert, Ca* (mg/L) is the concentration at the reference depth a* (m) above the invert, U* 

(m/s) is the shear velocity and κ =0.4 (-) is the Von Karman constant. The shear velocity is 

computed as follows (Verbanck, 1995): 

𝑈∗ = √
𝑔𝐴𝑆

𝑃
 

 

 

 

Eq 4 

where A (m
2
) is the wet cross section, P (m) is the wet perimeter, S is the pipe slope (m/m) 

and g is the gravity (m/s
2
). Thus, the Rouse number η can be written: 

𝜂 =
𝑤𝑠

𝜅
√

𝑃

𝑔𝐴𝑆
               

 

 

                             

Eq 5 

 

Hence, both the shape of the vertical concentration profile and the depth 𝑦𝑐 of the mean 

concentration depend on the flow rate Q. For high enough values of Q (turbulent fully mixed 

condition), the vertical concentration profile might be expected to show a more uniform 

distribution along the vertical axis (as the Rouse number exponent η in Eq 3 gets lower than 

about 0.6) (see details in Raudkivi, 1998). In contrast, for low Q values, the TSS concentration 

will be higher near the pipe invert compared to the free surface. Although Eq 3 remains 

widely used in the context of urban drainage, one should bear in mind that alternative forms 

of this equation are obtained when considering additional hypotheses about velocity profile, 

flow stratification and hydrodynamic interactions (e.g. Verbanck, 2000; Cantero‐Chinchilla et 

al., 2016). 

The problem therefore resides in estimating how much the measured TSS value at depth z 

deviates from the mean TSS concentration (𝑇𝑆𝑆̅̅ ̅̅ ̅) located at depth 𝑦𝑐, with the above 

theoretical assumptions. The proposed method is illustrated in Figure 13. 𝑦𝑐 is considered as a 

random variable with a cumulative distribution function (CDF) based on the shape of the 

vertical concentration profile proposed by Coleman (1982) and Verbanck (2000) (Eq 3), as 

there is usually a lack of data for calculating Ca* and a
*
. In addition, their estimation by semi-

empirical equations developed for specific site conditions and circumstances can lead to 

erroneous results, as these values have shown to be case-dependent (e.g. Ristenpart, 1995). 

The CDF curve is thus calculated by normalizing Eq 3, making it independent from Ca* and 

a
*
 and consistent with a CDF such that P(z=0 > 𝑦𝑐) = 0 and P(z=H > 𝑦𝑐) = 1 (Figure 13f). In 

general terms, P(z > 𝑦𝑐) = 0.5 when z is equal to the median of 𝑦𝑐, to be called med[𝑦𝑐]. The 

probability P(z > 𝑦𝑐) that a random sampling depth z is higher than the point where 𝑇𝑆𝑆̅̅ ̅̅ ̅ is 

located should be equal to P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅), i.e. the probability of underestimating 𝑇𝑆𝑆̅̅ ̅̅ ̅. The 

probability of non-exceedance of 𝑇𝑆𝑆̅̅ ̅̅ ̅ can be thus computed by evaluating any sampling point 

z (where 0 ≤ z ≤ H) over the CDF of 𝑦𝑐 (Figure 13g). Cases for which z is lower than med[𝑦𝑐] 

will result in a high probability of overestimating 𝑇𝑆𝑆̅̅ ̅̅ ̅. 

The Rouse number η plays a role in the shape of the CDF, leading to expect a dynamic 

behavior of P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) for different Q values. Regarding situations in which med[𝑦𝑐] is 

closer to the pipe invert, i.e. low Q values and curved vertical concentration profiles, a 
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sampling point z close to H (i.e. near the free surface) might lead to a high probability of 

underestimating 𝑇𝑆𝑆̅̅ ̅̅ ̅. For high enough values of Q with fully mixed condition, P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) 
or P(z > 𝑦𝑐) can be expected to be close to 0.5, for all 0 ≤ z ≤ H. In theory, the optimum 

scenario is obtained if the sampling point z is equal to med[𝑦𝑐]. 

With the Monte Carlo (MC) method, two sources of variability in P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) are 

accounted for: (i) normal distributions to account for measurement uncertainties in physical 

variables: Q and h both at each time step, ws and D (Figure 13a and Figure 13b); and (ii) 

uniformly distributed sampling depth z along the vertical axis (Figure 13d). With this method, 

1000 MC simulations have been done respectively for these two sources, with index i = 1 to 

1000 and j = 1 to 1000 correspondingly. Uncertainties in variables Q, h, D and ws, are 

represented by independent normal distributions with the mean equal to the measured value 

and the standard deviation equal to the standard uncertainty as proposed in (ISO, 2009).  

Considering that the sampling depth zj is uniformly distributed, the lower and upper limits of 

the distribution are defined as 0.25 H and 0.75 H. The basis of this hypothesis is the technical 

arrangement of the sampling tube in Chassieu: the tube is attached to the roof of the 1.6 m 

diameter circular sewer, it is mobile thanks to a rotation axis and its position varies with Q 

and H. This variation is not a confidence interval and is neither controlled but the above range 

is assumed to represent acceptably the existing field conditions (Figure 12). The uncertainties 

in the physical variables allow calculating the pdf (probability density function) of η (Figure 

13c) at each time-step of the rainfall event and consequently, for each Monte Carlo simulation 

i, a concentration profile Ci is established (Figure 13e). The CDF of yi for the i-th simulation 

is then calculated by normalizing the concentration profile in such a way that P(0 > 𝑦𝑐) = 0 

and P(H > 𝑦𝑐) = 1 (Figure 13e to Figure 13f). 

For each simulation (i, j), P(zj > 𝑦𝑐)i is different. Consequently, the MC runs lead to a 

complete description of the P(zj > 𝑦𝑐)i probabilistic behavior, including mean values and 

confidence intervals (expressed as 5 % and 95 % percentiles). The analysis is undertaken by 

comparing the evolution of E[P(z > 𝑦𝑐)] (mean of all simulations), 5 % and 95 % percentiles 

of P(z > 𝑦𝑐) (or P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅)) versus the flow mean velocity Um and/or the water level H. 

Given the fact that, in practice, the minimum possible sampling height is the sampling tube 

diameter (4 cm), water levels H lower than 4 cm were not considered (Um < 0.63 m/s). It is 

assumed as well that TSS values are measured in the centroid of the sampling tube (2 cm from 

the tube borders). 

It is worth to note that sampling campaigns are frequently carried out with commercially 

available autosamplers with sampling tube inner diameters in the range 10-20 mm. In such 

cases, the intake position is more a point along the vertical axis than in the Chassieu case with 

a 4 cm tube. Sampling errors may thus be potentially more significant. 

Time series method (TSM) 

If online TSS time series are available, a second method is proposed for comparison with the 

above one. The general idea is to describe the variability of TSS concentrations for a given Q 

value. Consequently, with the hypothesis previously established, the variability of TSS values 

for a given Q value can be attributed to hydrodynamic conditions through the cross section 

(concentration gradients, turbulence, sampling position variability). Thus, assuming the 

presence of concentration vertical gradients or concentration profiles (this hypothesis could 

not be properly checked in Chassieu as simultaneous TSS samplings at various points along 

the vertical axis were not available), the variability of TSS values for a given Q value might be 
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explained by (i) the variation of the sampling tube position, (ii) the concentration vertical 

profile and (iii) uncertainties of TSS concentrations.  

Given that the number of TSS values related to a specific Q value becomes lower as Q is more 

atypical in the data set, TSS values are grouped by Q classes (or Rouse number η, which 

depends on Q according to Eq 5). The classes are defined by setting the same (or nearly the 

same) number of TSS measurements within each η class. This data arrangement is also made 

with the purpose of having a better distribution and similar representativeness of the results 

for all classes. For each η class, a TSSi value is randomly selected by using a uniform 

distribution. The number of times TSSi is lower than 𝑇𝑆𝑆̅̅ ̅̅ ̅ is counted and divided by the total 

number of simulations (i = 1 : 10000). This calculation gives an estimation of P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) 
for a given η class. The purpose of sampling multiple TSS values in a given η class with a 

uniform distribution is to be consistent with the hypotheses established in SM. In SM, the 

samples are assumed to be collected according to a uniform distribution along the vertical 

cross section (from 0.25 H to 0.75 H). This assumption about the uniform-sampling is 

independent from the field data distribution of the TSS values along the vertical axis for a 

given Q value. For SM, the shape of the TSS vertical distribution is based on the shape of the 

dimensionless vertical profile (Figure 13e, f). For TSM, the shape of the distribution is found 

by grouping the TSS data in η classes. The pdf of the TSS values due to the vertical variability 

given by the two approaches (SM and TSM) shows to be consistent under a visual inspection 

(similar to an exponential distribution, as in Figure 13f). The η values (in a η class) are also 

expressed versus velocity Um and water depth H for comparative purposes with SM. In 

addition, uncertainties in TSS measurements will result in additional uncertainty in P(TSS < 

𝑇𝑆𝑆̅̅ ̅̅ ̅). To take this into account, MC simulations with j = 1 : 1000 runs are carried out to 

propagate TSS uncertainties into P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅). Therefore, the curve P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) as a 

function of Um (or H) could be estimated for each simulation j, leading to calculate the mean 

simulation E[P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅)] of these curves with its percentiles 5 % and 95 %.  

It is worth mentioning that in TSM the relation between TSS variability, sediment profile and 

flow rate is assumed to be independent of the rainfall event, as the complete TSS rainfall-

weather time series is grouped by η classes (Q values). However, the relationship between 

TSS variability and flow rate is rather dependent on each particular rainfall event (due to TSS 

availability and variability on catchment surfaces, rainfall intensities and surface runoff rates, 

etc.): this inter-event variability has been neglected in our hypotheses. 
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Figure 13. Diagram of SM for a Monte Carlo i, j simulation. 
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Uncertainties due to underestimations 

P(z > 𝑦𝑐) (or P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅)) gives the probability of sampling a TSS value lower than the 

mean concentration (underestimation). Converting this probability value into a direct 

uncertainty in the TSS measurement is relevant for practical purposes. Therefore, a bias factor 

K can be proposed to assess this uncertainty source in TSS measurements (Eq 6).  

𝑇𝑆𝑆̅̅ ̅̅ ̅ = 𝐾 × 𝑇𝑆𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

 

 

Eq 6 

 

where K might be computed as Ksm for SM and Ktsm for TSM (Eq 7).  

      𝐾𝑠𝑚 =
𝐸[𝑦𝑐]

𝑚𝑒𝑑[𝑦𝑐]
     𝑎𝑛𝑑     𝐾𝑡𝑠𝑚 =

𝐸[𝑇𝑆𝑆]

𝑚𝑒𝑑[𝑇𝑆𝑆]
∝ 𝐾𝑠𝑚    

 

 

 

Eq 7 

 

If z is equal to 𝑚𝑒𝑑[𝑦𝑐] then Ksm is equal to one. In case of TSM, Ktsm = 1 for E[TSS]= 

med[𝑇𝑆𝑆̅̅ ̅̅ ̅] (no asymmetry in the CFD of TSS). The K factors obtained by SM and TSM are 

calculated and compared, aiming to estimate an order of magnitude of the bias in TSS 

concentrations (under- or over-estimation, if K is respectively < 1 or > 1). The main 

hypothesis is that the absolute difference between 𝐸[𝑦𝑐] and 𝑚𝑒𝑑[𝑦𝑐] is proportional to the 

absolute difference between 𝐸[𝑇𝑆𝑆] and 𝑚𝑒𝑑[𝑇𝑆𝑆] obtained with real TSS measurements 

(TSM). This assumption with SM allows the comparison both approaches to describe the 

variability of the TSS under- or over-estimation as a function of Um or H. 

3.3 RESULTS AND DISCUSSION 

Both methods are applied to 89 rainfall events monitored in 2007 in Chassieu. An example is 

shown in Figure 14 for SM with a value of Q = 0.023 m
3
/s (corresponding to Um = 1 m/s). In 

this case, E[z] = 0.5 H = 2.3 cm and P(2.3 cm > 𝑦𝑐) = 0.88 (Figure 14). The variability of the 

curve (represented by its thickness) due to uncertainties in the Rouse number is negligible for 

this example. Therefore the probability distribution of the point where the mean concentration 

is located is constant, once uncertainties in physical variables are considered. The graph 

shows that med[𝑦𝑐] = 0.05 H = 0. 3 cm, and thus P(0. 3 cm > 𝑦𝑐) = 0.5 (best theoretical 

measurement scenario in agreement with the SM hypotheses). The mean value E[𝑦𝑐] is 

different from the median, which is coherent with the assumption of asymmetry of the CFD. 

Therefore, z = E[𝑦𝑐] is not the best sampling point as E[𝑦𝑐] = 0.16 H = 0.7 cm and P(0.7 cm 

> 𝑦𝑐) = 0.68. This means that there is a greater probability of obtaining lower TSS values than 

at 0.05 H (the med[𝑦𝑐] location) where P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) = 0.5 (same probability of under- or 

over- estimation). 
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Figure 14. SM example of the CDF of 𝑦𝑐, including med[𝑦𝑐], E[𝑦𝑐] and E[z] for illustrative purposes (Q = 

0.023 m
3
/s). 

For all rainfall events, P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) (or P(z > 𝑦𝑐)) is constant for the analyzed Um values 

with SM (Figure 15a). The curve of the vertical concentration profile is expected to be more 

pronounced as Um values are lower (Eq 3). This fact is considered significant when H < 4 cm 

(sampling tube height), in which the P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) estimations become higher. However, 

these results are not included here as sampling at depths lower than 4 cm is not feasible from 

a practical point of view (diameter of the sampling tube equal to 4 cm in our case). E[P(TSS < 

𝑇𝑆𝑆̅̅ ̅̅ ̅)] is 0.88 for all velocities Um (Figure 15a), with 5 % and 95 % percentiles of E[P(TSS < 

𝑇𝑆𝑆̅̅ ̅̅ ̅)] equal to 0.80 and 0.95 respectively. 

Rouse number η lower than 0.6 has been found to correspond to fully mixed and 

homogeneous suspension along the vertical axis by experimental studies (see e.g. Raudkivi, 

1998). Therefore, Eq 3 under this range of Rouse numbers can be expected to be closer to a 

fully mixed and homogeneous condition. Although the complete dataset of Chassieu showed 

lower Rouse numbers (η max = 0.04), the obtained CDFs of 𝑦𝑐 do not correspond to a fully 

uniform distribution, even for high Um values and 5 % and 95 % percentiles (Figure 15a), as 

P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) is always greater than 0.5: this is mainly due to the use of a dimensionless 

concentration profile which to some extent restricts the possibility to get a completely fully 

mixed profile for the considered Um velocities. 

This fact might lead to conclude that a uniformly-distributed behavior of the concentration for 

high Q values could not be clearly observed with SM. The interquartile range IQR of P(TSS < 

𝑇𝑆𝑆̅̅ ̅̅ ̅) is approximately 0.08, without varying as Um values increase. This IQR is mainly due to 

uncertainties in z (Figure 13d), as the shape of the CDF is not very sensitive to uncertainties 

in η (e.g. Figure 14). The value med[𝑦𝑐] is about 5 % of H for all Um values. The magnitude 

of Ksm showed the possible asymmetry between the sampling point and the proposed CDF. 

TSS underestimations are approximately 269 %, as Ksm is 3.69 for all Um values with 

negligible IQRs (from Eq 6 and Figure 15b). This reflects the significant asymmetry of the 

CDF proposed within this approach. 
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a) b) 

  
Figure 15. a) P(z > 𝑦𝑐) and b) Ksm obtained by SM versus Um (m/s) and H (cm). 

Regarding the time series method (TSM), the η classes were defined based on the criterion 

exposed in the previous section, leading to the TSS distribution within each η class shown in 

Figure 16. The length of each η class does not vary significantly, having a similar number of 

samples within each class (about 6560 samples). This can be explained by the fact that the 

data amount is higher for lower Q values. As there is an inverse relation between η and Q, the 

definition of classes based on η values tends to distribute the data more uniformly among the 

η classes. In average, P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) is about 0.64 for all Um values, including estimations 

ranging from 0.57 up to 0.73 (Figure 17a). The interquartile range IQR of P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) 
within this approach is 0.02. Likewise to SM, no trend could be detected towards a value of 

P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) = 0.5 as Um increases (towards a fully mixed condition, although η numbers are 

relatively small). The Ktsm factor is about 1.39, showing probable TSS underestimations of 

about 39 % (from Eq 6) (Figure 17b). Although the Ktsm factor is not constant for the range of 

analyzed Um values (from 0.64 m/s to 1.05 m/s), no clear trend could be neither appreciated in 

Ktsm for higher Um and H values. However, the variability of the Ktsm is significant, as this 

factor ranged from 1.21 to 1.82, i.e. underestimations from 21 % up to 82 % (with a negligible 

IQR) (Figure 17b). 
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Figure 16. TSS distribution within each η class for TSM (about 6560 samples per class). 

Globally, the P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) given by TSM (about 0.64) is lower than by SM (about 0.88). 

The ideal measurement scenario recommended by SM is for the case E[z] = med[𝑦𝑐] ≈ 

0.05 H, as P(0.05 H > 𝑦𝑐) = 0.5. TSM shows a more realistic value of TSS underestimations 

(about 39 %) compared to SM, which shows TSS underestimations of about 269 % under the 

hypothesis that Ksm and Ktsm are comparable. SM can point towards recommendations about 

the best sampling point (at 0.05 H, for the case study). Nevertheless, conclusions drawn from 

this methodology strongly depend on SM hypotheses, especially the shape of the CDF. 

a) b) 

  
Figure 17. a) P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) and b) Ktsm with TSM versus Um (m/s) and H (cm). 

Based on this case study, TSM seems preferable to estimate TSS uncertainties, as P(TSS < 

𝑇𝑆𝑆̅̅ ̅̅ ̅) and Ktsm values are more alike to ranges previously established in the literature (e.g. 

Rossi, 1998). The K factor and the P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) values indicate an important asymmetry in 

the TSS distribution along the cross section (as P(TSS < 𝑇𝑆𝑆̅̅ ̅̅ ̅) > 0.5, even if η < 0.6), a fact 

that is strongly recommended to be considered in TSS uncertainties assessment. 
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3.4 CONCLUSIONS 

The two methods presented in this Chapter 3 aim to assess uncertainties in TSS measurements 

during rainfall events due to the sampling tube intake position along the vertical axis in a 

sewer. The simplified method (SM) is based on flow rate and water depth time series. The 

time series method (TSM) requires additional TSS time series as input data. If online TSS time 

series are available, TSM appears as an applicable strategy for assessing the variability of TSS 

concentration as a function of the flow rate. Otherwise, SM is proposed as an alternative 

approach. However, SM is less site-specific (no local TSS data are used) and provides rougher 

estimations, based on further hypotheses harder to check on site. 

The probability of underestimating the cross section mean TSS concentration is estimated to 

be approximately 0.88 within SM. In case of TSM, the probability is about 0.64 for all 

velocity values. Interquartile ranges are higher for SM (IQR = 0.08) than for TSM (IQR = 

0.02). TSM shows more realistic TSS underestimations (about 39 %) than SM (about 269 %). 

Differences between the two methods are mainly due to simplifications in SM (absence of 

TSS measurements and operation of the sampling system). SM can estimate the measuring 

depth at which the probability of over estimation is equal to the probability of underestimation 

(about 0.05 H, with the proposed hypotheses). SM assumes a significant asymmetry of the 

TSS concentration profile along the vertical axis in the cross section. This is compatible with 

the distribution of TSS measurements found in TSM. 

The proposed methods can be used to calculate indicators of (i) the measurement quality and 

(ii) the representativeness of TSS measurements, expressed as the probability of under- or 

over-estimation of the true cross section mean TSS concentration. This probability may be 

useful for correcting errors in TSS raw data.  
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GENERAL CONCLUSIONS OF PART 1 

Different sampling strategies during rainfall events are simulated and evaluated by means of 

online TSS and flow measurements in four international catchments (Chassieu-France, 

Ecully-France, Berlin-Germany, Graz-Austria). The average relative sampling error and the 

residuals distribution are estimated from EMCs simulated by the studied strategies and 

compared to EMCs obtained by the complete time series from online monitoring of various 

rainfall events. For the studied datasets (Berlin, Chassieu, Graz and Ecully), a sampling 

volume proportional to runoff volume between two samples, with constant sampling intervals, 

strategy (cTpSV), delivers the most representative results in terms of accuracy (Mean Square 

Relative Error MSRE), bias (from residuals analysis) and uncertainties propagation. 

Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 

185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with average 

sampling errors between 7 % and 20 % and uncertainties in sampling errors of about 5 %, 

depending on the sampling interval. From Sobol’s total sensitivity index analyses, it can be 

stated that special attention should be paid to field sampling procedures and laboratory 

analyses (especially for larger sampling intervals), as uncertainties related to sampling 

volumes and TSS concentrations seemed to be highly influential on uncertainties of EMCs. 

Statistical tests indicate that the uncertainties of EMCs obtained from time series are 

significantly lower than the uncertainties of EMCs obtained by sampling strategies (Wilcoxon 

test, p-value < 0.05).    

These results from Chapter 2 led to hypothesize about the potential errors in TSS data, 

specifically in the average EMC, estimated by means of different sampling strategies, 

compared to the average EMC obtained by considering the complete time series and 

uncertainties from online measurements. These findings highlight the influence of temporal 

resolution and uncertainties of TSS data over the EMCs estimations, bringing evidence of 

possible biases in TSS pollutographs (different means of the pollutographs) when data is 

obtained by sampling strategies instead of online measurements. This fact might significantly 

affect the calibration and performance of TSS pollutographs and loads stormwater intra-

events models, depending on the data used as input (monitoring campaigns or online 

measurements). Therefore, data from TSS online monitoring is retained for modelling 

purposes in Part 3 (TSS modelling). Data obtained from monitoring campaigns (sampling 

strategies) could still be used as an input for intra-event TSS models in the absence of online 

measurements, accounting for potential errors or biases in the EMCs of the pollutographs by 

means of modelling strategies such as bias correction factors included in the calibration 

process. 

As the main sources of error in any sampling procedure are not only due to the heterogeneity 

in time of TSS but also due to the sampling technique, uncertainties in online and laboratory 

TSS individual values are also a relevant aspect. The influence of field sampling conditions 

on the uncertainties of TSS measured values is often considered to be represented by the 

analytical uncertainty of the laboratory analysis. However, field sampling conditions might 

have a significant additional contribution to the total uncertainty of the TSS values. With the 

purpose of verifying this hypothesis, Chapter 3 presents two methods that aim to assess 

uncertainties in a TSS measurement at time step t during rainfall events due to a scarcely 

described uncertainty source in the literature: the sampling tube intake position along the 

vertical axis in a sewer. The simplified method (SM) is based on flow rate and water depth 

time series. The time series method (TSM) requires additional TSS time series as input data. If 

online TSS time series are available, TSM appears as an applicable strategy for assessing the 
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variability of TSS concentration as a function of the flow rate. Otherwise, SM is proposed as 

an alternative approach. However, SM is less site-specific (no local TSS data are used) and 

provides rougher estimations, based on further hypotheses harder to check on site. 

The probability of underestimating the cross section mean TSS concentration is estimated to 

be approximately 0.88 within SM. In case of TSM, the probability is about 0.64 for all 

velocity values. Interquartile ranges are higher for SM (IQR = 0.08) than for TSM (IQR = 

0.02). TSM shows more realistic TSS underestimations (about 39 %) than SM (about 269 %). 

Differences between the two methods are mainly due to simplifications in SM (absence of 

TSS measurements and operation of the sampling system). SM can estimate the measuring 

depth at which the probability of over estimation is equal to the probability of underestimation 

(about 0.05 H, with the proposed hypotheses). SM assumes a significant asymmetry of the 

TSS concentration profile along the vertical axis in the cross section. This is compatible with 

the distribution of TSS measurements found in TSM. 

Chapter 3 revealed a power law describing the TSS as a function of flow rate, including 

higher variances of TSS for higher flow rates, by means of analysis for the TSM. This 

information is useful for modelling intra-event TSS load dynamics, giving insights about the 

complexity for representing pollutants loads dynamics. For example, in Chapter 6 it is 

established that expressing TSS as a monotonic function of flow rate is not sufficient to 

appropriately represent TSS values, especially as flow rate is higher. However, one should 

bear in mind that global results and conclusions obtained from approaches in Chapter 2 and 

Chapter 3 assume implicitly that all rainfall events are representative and comparable, i.e. 

results for a given event are generalizable to the others. This inter-event generality is 

questioned and further analyzed in Part 2 by the use of hydrological model-based approaches, 

grouping rainfall events with similar characteristics and discarding unrepresentative events. 

These aspects are applied to TSS modelling in Part 3, jointly with discussions and reflections 

from the present Part 1.   
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PART 2 UNCERTAINTY ASSESSMENT IN A 

CONCEPTUAL HYDROLOGICAL MODEL AND 

RAINFALL DATA  
 

 

 

The flow at the outlet of urban drainage systems can be seen as the result of multiple 

anthropic and non-anthropic complex processes developed within different temporal and 

spatial scales, of which the main driving force is the water that precipitates over the catchment 

(Leonhardt et al., 2014; Kretzschmar et al., 2016). Most rainfall-runoff model structures used 

nowadays in hydrology can be classified as conceptual models (Wagener et al., 2003), which 

are models that offer a suitable balance between computational simplicity and physical 

meaning of their parameters (Wheater et al.,1993; Zhang et al., 2015). Indeed, hydrological 

simulations by these simplified mathematical structures can be a suitable description of the 

rainfall-runoff process in urban catchments for several purposes (e.g. Reed et al., 2004; Coutu 

et al., 2012). The hydrological simulation by conceptual models has been therefore applied 

for prediction of the impact of future change, decision-making processes, improvements of 

hydrological understanding and situations in which data assimilation is not possible (Beven 

and Smith, 2014).  

Therefore, a Conceptual Rainfall-Runoff (CRR) model has been tested with information of 

365 rainfall events from the Chassieu urban catchment (Lyon, France), measured between 

2004 and 2011 (see details in Chapter 1; Métadier, 2011; Sun et al., 2015). The model 

consists of a single reservoir lumped model described by Eq 8, Eq 9 and Eq 10. The effective 

rainfall input Xnet(t) (L/s) is calculated from Xobs(t) (mm/h) by the Horton infiltration model 

(Eq 8 and Eq 9). The infiltration rate at time t, f(t) (mm/h) in Eq 8, is dependent on three 

parameters: initial and final infiltration rates f0 (mm/h) and fc (mm/h), respectively, and the 

decay constant k (min
-1

) specific to the soil. The S value is the effective area of the catchment, 

i.e. 80 ha (Eq 9).  The single reservoir lumped model is established in Eq 10, for calculating 

the simulated flow Ysim(t) (L/s) as a function of Xnet(t). Three additional parameters are 

included in the linear reservoir: the lag time of the reservoir K1 (min), an additional advective 

delay Td (min) and q (L/s) as an additive term of the output to represent the baseflow (Eq 10). 

The parameters of this single reservoir lumped model are listed in Table 6 (from Sun and 

Bertrand-Krajewski, 2013a). 

 

 

𝑓(𝑡) = 𝑓𝑐 + (𝑓𝑐 − 𝑓0) ∙ 𝑒
−𝑘𝑡 Eq 8 

𝑋𝑛𝑒𝑡(𝑡) = (𝑋𝑜𝑏𝑠(𝑡)  − 𝑓) ∙ 𝑆 ∙ 10000/3600 Eq 9 

𝑌𝑠𝑖𝑚(𝑡) = 𝑒−
∆𝑡
𝐾1 ∙ 𝑌𝑠𝑖𝑚(𝑡 − ∆𝑡) + [1 − 𝑒−

∆𝑡
𝐾1] 𝑋𝑛𝑒𝑡(𝑡 − 𝑇𝑑) + 𝑞 Eq 10 
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Table 6. List of parameters for the model calibration  

Parameter (θ) Unity Values [min, max] 

fc mm/h [0, 5] 

f0 mm/h [0, 120] 

k min
-1

 [0, 5] 

Td min [0, 60] 

K1 min [1, 120] 

q L/s [0, 20] 

 

The selection of this particular model structure is based in its performing capabilities in 

relation to its simplicity, as suggested from previous studies using the same dataset (Sun and 

Bertrand-Krajewski, 2013b). However, the performance of such simplified models depends 

strongly on parameters and their uncertainties being well identified from previous analyses or 

experiments (Thyer et al., 2009).  

Indeed, determining a strategy for assessing the uncertainty of parameters given by data 

errors, including as well the variability related to the selected calibration period or rainfall 

events remains as a key aspect (Thyer et al., 2009; Ebtehaj et al. 2010; Guerrero et al., 2013; 

Gharari et al., 2013; Ye et al., 2014). Chapter 4 compares two single-event and multiple-event 

based strategies for parameters estimation to a novel strategy for the above CRR hydrological 

model. The proposed strategy consists in grouping the local parameters estimations obtained 

from local calibrations of rainfall events, according to connectivity criterion. This 

connectivity allows classifying the events in groups of hydrological families, leading to 

express global uncertainties of the parameters as conditional probability functions. Local 

parameter uncertainties and optimal values are estimated by means of a Bayesian approach 

and the DREAM algorithm (Vrugt et al., 2016). The benefits of simulating rainfall events by 

using parameter conditional probability functions are discussed, demonstrating the advantages 

of implementing this parameter assessment strategy in terms of different performance metrics 

(e.g. Dotto et al., 2013; Ye et al., 2014). The local parameters transferability is compared to 

different statistical depth definitions, as measures of multivariate centrality into the 

parameters probability density function (Bardossy and Singh, 2008). The proposed approach 

is adopted as well for the water quality modelling in Part 3.  

It is worth to mention that there are cases in which the local optimal parameters obtained for a 

certain rainfall event are not able to reproduce other calibration events, or neither the rainfall 

event itself (non-reproducible events from the analysis presented in Chapter 4). Indeed, one of 

the facts to which these discrepancies may be attributed is the errors in the input rainfall 

(Leonhardt et al., 2014; Kretzschmar et al., 2016; Del Giudice et al., 2016). Rainfall errors 

may have various origins, one significant case being the use of local rain gauge registrations 

as direct inputs, without considering spatio-temporal variability of the rainfall (Kavetski et al., 

2006a; Schellart et al., 2012; Kretzschmar et al., 2016). Aimed to correct rainfall 

measurements and assess their uncertainties, a rainfall error model-based approach is studied 

in Chapter 5. Hence, four error rainfall models are proposed by mixing a multiplicative error 

model, a reverse modelling approach and a constant/variable time-window methodology. The 
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capabilities of the four rainfall error models to identify errors in rainfall data are tested by 

comparing the errors in rainfall identified by the models to previously introduced error known 

structures in the original rainfall data.  

In Chapter 5 rainfall measurements are corrected in events that are non-reproducible from the 

analysis presented in Chapter 4, by means of the selected rainfall error model. The adopted 

values of the parameters to be used for calculating the corrected rainfall time series in non-

reproducible events are obtained from the conditional probability classification analysis 

presented in Chapter 4. Afterwards, general conclusions about Part 2 are given.   
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CHAPTER 4. STRATEGY FOR ASSESSING PARAMETERS OF A 

RAINFALL-RUNOFF MODEL BY CONNECTIVITY REPRESENTATIONS 

AND CONDITIONAL PROBABILITY FUNCTIONS  

 

Extended version of: 

Sandoval S., Bertrand-Krajewski J.-L. (2017). Strategy for assessing parameters of a rainfall-

runoff model by connectivity representations and conditional probability functions. 

Proceedings of the 14th International Conference on Urban Drainage, Prague, Czech 

Republic, 10-15 September, 3 p. 

 

4.1 INTRODUCTION 

 

The problem of parameters assessment consists in identifying and integrating the related 

uncertainty sources through the modelling chain (Sikorska et al., 2014). Probably the main 

types of uncertainty sources that influences model parameter estimations in CRR modelling 

are (adapted from Guerrero et al., 2013): errors in data (input/output) (e.g. Renard et al., 

2011; Del Giudice et al. 2016), model structure (e.g. Clark et al., 2008; Marshall et al., 2007) 

and selected data for calibration (e.g. Ebtehaj et al., 2010; Gharari et al., 2013) with their 

interactions (e.g. Renard et al. 2010; Sun and Bertrand-Krajewski, 2013a).   

The BATEA Bayesian approach (see Kavetski et al., 2006a; 2006b; Kuczera et al., 2006) is a 

commonly accepted framework to conceptualize the propagation of errors given by data 

(input/output) and model structure into parameters estimation by means of a solid conceptual 

basis (Yang et al., 2008). However, it can also be recognized from this approach that the low 

identifiability and the ill-posed nature of the calibration problem when errors in data 

(input/output) and model structure are explicitly accounted in the inference scheme and vague 

prior information about both sources is included (Kavetski et al., 2006a; Renard et al. 2010). 

Multiple authors used this conceptual framework to focus on specific uncertainty sources over 

parameters estimation, given its flexibility. For example, (i) input uncertainties: Thyer et al., 

2009; McMillan et al., 2011; Sun and Bertrand-Krajewski, 2013a; Del Giudice et al. 2016 and 

(ii) model structure uncertainties: e.g. Krysztofowicz, 2002; Bayesian Model Averaging 

(BMA) approaches (e.g. Duan et al., 2007; Marshall et al., 2007). Further contributions in the 

literature towards the assessment of uncertainty sources have been also proposed by 

alternative formal statistical and non-formal techniques (e.g. Abbaspour et al., 2004; 

Montanari and Brath, 2004; Montanari and Grossi, 2008; Kretzschmar et al., 2016; Fuentes-

Andino et al., 2017). However, a global consensus on how these error sources interact and a 

calibration methodology that allows to account them separately is still far from being reached, 

and thus, their interpretation is merely hypothetical (Sikorska et al., 2014). 

One simplified possibility for applying BATEA is to account for rainfall and model structure 

uncertainty sources into parameters uncertainties without further separation (Renard et al. 

2010; Dotto et al., 2011), an approach to be called from now on Bayesian Merged 

Uncertainties (BMU). The BMU tends to deliver more biased parameter estimations as errors 

in data (especially in input rainfall for hydrology, e.g. Del Giudice et al. 2016) and model 

structure are higher (e.g. Thyer et al., 2009). For those cases, model residuals are less alike to 

hold the hypothesis of Identically Independent Distributed (i.i.d.), condition on which the 



47 

 

mathematical strength of the method relies (Vrugt et al., 2016). As a potential solution to this 

inconvenient, advanced likelihood functions have been introduced, aimed to mimic complex 

nontraditional error residuals distributions (Schoups and Vrugt, 2010; Evin et al., 2014; 

Scharnagl et al., 2015). The immediate difficulty when using this statistically consistent 

approach is once again identifiability and ill-posed situations, as further parameters with 

inexistent prior information should be added into the inference scheme (adapted from Vrugt et 

al., 2016). Moreover, from an epistemological perspective, the inclusion of a likelihood 

function with additional parameters can be seen as coupling a black-box extension (in the 

sense of missing a physical interpretation) to the initial hydrological model structure, whose 

repeatability and generality are therefore questionable (adapted from Nearing et al., 2016). 

However, BMU calibrations have shown consistent results from a practical point of view 

under multiple simplified contexts, successfully avoiding obstacles related to the 

computational demand of the Bayesian inference by using the DREAM algorithm (see 

examples Vrugt et al., 2016). Stressing its simplicity, the BMU may be sounder to explore the 

inter-event variability of parameters by undertaking local event-by-event calibrations (e.g. 

Thyer et al., 2009; Singh and Bardossy, 2012; Sun and Bertrand-Krajewski, 2013a). Indeed, 

multiple further studies have revealed the variability of the parameter estimations given by the 

use of different time periods/rainfall events on calibration under different contexts (Srikanthan 

et al., 2009; Ebtehaj et al., 2010; Brigode et al., 2013; Gharari et al., 2013; Sikorska et al., 

2014; Thirel et al., 2015; Bisselink et al., 2016).  

Based on the idea of repeatability (including more than 255 calibration events for the study 

case) and the local event-dependent nature of rainfall errors, this event-by-event calibration 

approach brings in principle the possibility of dealing with rainfall uncertainties under a 

systematic inspection. Local parameter estimations in which the rainfall data is able to 

acceptably explain the flow rate can be then considered as representative (adapted from Ye et 

al., 2014; Ajmal et al., 2015; Fenicia et al., 2016) (strategy to be called single-event 

calibration SE). However, the SE strategy might fail for flexible but erroneous model 

structures that, by means of local calibrations, can mimic the flow rate from severely 

corrupted rainfall data. This shortcoming can be tackled from the idea that identifying the best 

parameter set relies also on the selection of time periods with similar hydrological 

characteristics (Seibet, 2003). Local parameter estimations can be then grouped based on the 

transferability concept, defined as the predictive capacity of parameters obtained from 

different rainfall events (Bardossy and Singh, 2008; Singh et al., 2016).  

Therefore, the global nature of model structure uncertainty and the inter-event parametric 

variability is addressed based on these concepts and the results of SE strategy, proposing a 

novel parameter estimation strategy (to be called single-event conditional, SEConditional). 

The main idea is to divide parameters marginal probability function (formed by all the sets 

local parameter estimations in the SE strategy) into conditional probability functions (formed 

by groups of sets of local parameters estimations). For this purpose, an adjacency matrix that 

reflects how local parameter estimations are interconnected to the other calibration rainfall 

events is constructed under a transferability perspective (analogue to a leave-all-out cross 

validation scheme). This adjacency matrix can be represented as a graph of “connected” 

rainfall events. The graph is analyzed by clustering techniques to construct then the 

conditional probability functions (see clusters applications over transferability indicators e.g. 

Singh et al., 2016).  

For many applications in prediction and for calculating various performance indicators (e.g. 

Nash-Sutcliffe criterion – NS -), one single set of parameters as an “optimal” estimator, is 

desired (Bardossy and Singh 2008; Bennett et al., 2013; Leonhardt et al., 2014). However, a 
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unique “best” set of parameters from the global probability functions (marginal: SE or 

conditionals: SEConditional) cannot be directly selected by comparing the likelihood values 

obtained from local BMU calibrations in different rainfall events, given the relative nature of 

likelihood estimations (adapted from Vrugt et al., 2016). Therefore, the geometrical 

consistency of the marginal (SE) and conditional (SEConditional) probability functions is 

evaluated by seeking for a reference frame that appropriately describes the increasing 

relationship between the depth of the sets of parameters inside the probability functions and 

their transferability (Bardossy and Singh, 2008; Chebana et al., 2010; Guerrero et al., 2013). 

If a geometrically consistent frame of reference is found (measure of deepness), the 

evaluation of the “deepest” parameter is direct, depending on the adopted definition of 

statistical depth (see details Pokotylo et al., 2016). Six measures of statistical depth are 

explored. 

Therefore, Chapter 4 presents a comparative study between three global parameter assessment 

strategies applied to the studied CRR model and study case: (i) mean of the set of local 

optimal parameters obtained from all acceptable event-by-event calibrations (SE), (ii) 

traditional multiple-events simultaneous calibration (strategy to be called ME) (e.g. Tan et al., 

2008; Mancipe-Munoz et al., 2014, among many others) and (iii) the proposed strategy based 

on the results of local single-event calibrations (SEConditional). The estimation of rainfall-

runoff model parameters and of their uncertainties with SEConditional aims to diminish the 

uncertainty bounds of runoff predictions (precision), maximize the number of measurements 

inside the uncertainty bounds (reliability), keeping or even improving the mean prediction for 

the verification events (accuracy). The performance of the model is evaluated for 110 

verification rainfall events.   

 

4.2 METHODOLOGY  
 

 

θ is the set of parameters of the hydrological model (fc, f0, k, Td, K1, q) and p(θ/Y) their 

probability density function (pdf), given a series of flow rate observations Yobs. The BMU, 

widely used in hydrological modelling (Vrugt et al., 2016), allows to calculate p(θ/Y), named 

posterior distribution, over the basis of a likelihood function and a prior knowledge of the 

distribution of parameters p(θ), which is expressed by   Eq 11.  

 

𝑝(θ 𝑌⁄ ) = 𝐶∏
1

√2𝜋�̂�𝑡
2
exp [−

1

2
(
𝑌𝑠𝑖𝑚 (𝑡, θ) − 𝑌𝑜𝑏𝑠 (𝑡)

�̂�𝑡
2 )2]

𝑛

𝑡=1

∙ 𝑃(θ)    Eq 11 

 

where n is the number of flow-rate data Yobs, Ysim(t, θ) is the simulated flow rate by the model 

at a given time step t from the observed rainfall Xobs and a set of parameters θ, p(θ) is a 

uniform probability distribution for each parameter (informative-less), C is a normalization 

coefficient and �̂�𝑡
2 is the residual variance, considered for this application to be equal to the 

squared value of flow rate Yobs(t) standard uncertainty. The DREAM algorithm is used for 

determining p(θ/Y) as a solution to Eq 11 (Vrugt et al., 2016). The set of parameters that 

represents the optimal parameters values (for this case the set of values which maximizes the 

likelihood) among all probable values p(θ/Y) is called θopt. The p(θ/Y) function is estimated 

from three different approaches, by the use of the first 255 events for calibration (the last 110 

remaining events are used for verification). A 70 % / 30 % ratio for calibration / verification is 

established from recommendations given by comparable studies (Mourad et al., 2005). The 

verification events are used to evaluate the performance in prediction by the parameters 
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estimated from each of the three calibration strategies. For each approach, an identification 

criterion is proposed in order to discard non-reproducible events by the CRR model from the 

calibration phase.  

- Single-event strategy (SE): rainfall events are calibrated with the Bayesian method (Eq 11) 

and the DREAM algorithm, by using the data Xobs i and Yobs i for the calibration rainfall event i. 

This process leads to estimate an optimal set of parameters θopt i and a p(θ/Y)i function for 

each rainfall event i (i = 1 : 255). The calibration rainfall events i for which θopt i has a NS < 

0.75 are considered as non-reproducible by the hydrological model and the θopt i estimation is 

discarded. The global function p(θ/Y) is calculated as the marginal probability of all the 

functions p(θ/Y)j and the global set of optimal parameters θopt as the “deepest” point inside 

p(θ/Y) (see Bardossy and Singh, 2008), with the non-discarded events j.  

- Multi-event strategy (ME): the calibration is done globally with the ensemble of all 

calibration rainfall events, with Xobs and Yobs as two vectors (Eq 11) and with the DREAM 

algorithm. This approach leads to estimate directly a global set of optimal parameters θopt 

(based on the maximum likelihood, Vrugt et al., 2016) and a global function p(θ/Y). The 

formulation of a criterion for identifying non-reproducible rainfall events by this approach is 

less straightforward. It is worth to point out that an alternative parameter estimation strategy 

could be proposed by assigning a different set of parameters to each event and undertaking the 

calibration simultaneously. However, this will massively increase the dimension of the 

calibration problem (into a total of 1530 parameters for the CRR and the calibration dataset), 

making it expensive in computational resources. This limitation is especially unfeasible for 

Monte Carlo parameters inference schemes such as the Bayesian method with the DREAM 

algorithm, due to the number of iterations to be undertaken (of the order of 1e10 in this case). 

A plus to this alternative approach is that the inter-event correlation for each parameter of θ 

could be assessed directly, opening research directions for inter-event stochastic modelling of 

parameters. 

- Single-event strategy conditional (SEConditional): the 255 sets of optimal parameters, θopt i 

obtained by the SE approach, are classified into n types, with the aim of re-grouping the 

events with similar hydrological characteristics. The underlying hypothesis is that two rainfall 

events i and j (i = 1 : 255, j = 1 : 255 and i  ≠  j) are connected if the optimal set of parameters 

θopt i obtained for the event i is able to reproduce as well the rainfall event j and if θopt j is also 

able to reproduce the rainfall event i, in both cases with a Nash-Sutcliffe criterion NS > 0.75 

(following a leave-all-out cross validation scheme). A symmetric adjacency matrix (AM) is 

constructed with AM(i, j) = 1 and AM(j, i) = 1 if the calibration rainfall events i and j are 

connected and AM(i, j) = 0 otherwise. The diagonal of AM (i = j) is filled with zeros by 

convention. The proposed AM represents also a graph, in the sense that events (or optimal 

local sets of parameters) are nodes and the potential connections between events i and j (or 

optimal local sets of parameters θopt i and θopt j) are edges, when AM(i, j) = 1. The graph 

represented by AM is undirected (symmetric AM), as assigning an orientation to the 

connections or edges lacks of interpretability. When the connectivity of the graph is verified, 

two different scenarios can be obtained: (i) the graph is completely connected (all nodes have 

at least one connection) (Figure 18a), (ii) the graph is not entirely connected and is divided in 

sub-graphs (Figure 18b). 
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a) b) 

  

Figure 18. Topologic representation of a) connected graph (29 nodes) and b) disconnected graph into 2 sub-

graphs (18 and 11 nodes resp.). 

All events that belong to sub-graphs with less than 10 nodes are labeled as non-reproducible 

events and are discarded from the analysis, including completely disconnected events (i.e. 

sub-graphs with one node). This, given that a minimum of 10 nodes (sets of parameters) was 

required for calculating the deepness of all nodes inside a sub-graph, when considering 

definitions of statistical depth such as the Potential depth (Aizerman et al., 1970). For the 

scenario of Figure 18b the division into n = 2 sub-graphs (including a number of nodes equal 

or greater than 10) delivers the number of clusters (hydrological groups) to be used directly (2 

clusters). For the scenario described in Figure 18a, the number of n clusters in the graph can 

be defined by testing with a supervised or unsupervised cluster algorithm (predefined or not 

predefined number of clusters). As no direct grouping by sub-graphs is found for the case 

study (situation of example in Figure 18a), a supervised clustering technique with n = 2 

groups is tested with the total graph for identifying groups of connected rainfall events, with 

the “spinglass.community” function, spins = 2 (supervised cluster for two groups) (see 

Reichardt and Bornholdt, 2006) of the package “igraph” (Csardi and Nepusz, 2006), 

implemented in R (R Development Core Team, 2017). The purpose of this algorithm is 

essentially to “maximize” the connectivity density inside each cluster (Reichardt and 

Bornholdt, 2006). The number of n = 2 hydrological groups, labelled as T1 and T2, used to 

clusters the graph and classify the rainfall events can be supported on: (i) a suitable separation 

shown by a further Principal Component Analyses (PCA) (Pearson, 1901) by using two 

groups, (ii) parameters in p(θ/Y) showing bimodal behaviors in certain of their marginal 

univariate distributions (especially parameters Td and K1) that could be explained from the 

separation given by p(θ/Y, T1) and p(θ/Y, T2), (iii) satisfactory results in the verification stage 

from using p(θ/Y, T1) and p(θ/Y, T2) as parameter estimations rather than with the marginal 

distribution p(θ/Y), (iv)less performant results were obtained by further tests with n > 2 

conditional probability functions in prediction. Therefore, the selection of n = 2 conditional 

probability functions (T1 and T2) to explain the variability of the marginal distribution p(θ/Y) 

is considered as appropriate for the case study. These criteria can be useful for defining the 

number of clusters (hydrological groups), for further case studies with different datasets and 

models.  

Therefore, the function p(θ/Y) is calculated as in the SE approach (but discarding non-

connected sub-graphs instead of local estimations with NS < 0.75), and then divided into two 

conditional probability functions p(θ/Y, T1) and p(θ/Y, T2), by labeling each local p(θ/Y)i as a 

type T1 and T2 from the cluster of graph analysis. θopt is defined as well by two values θoptT1 

and θoptT2, calculated as the “deepest” point inside p(θ/Y, T1) and p(θ/Y, T2) resp. (see 

Bardossy and Singh, 2008). The classification of a verification rainfall event in a hydrological 

group (type T1 or T2), for deciding if it is more pertinent to use p(θ/Y, T1), θoptT1 or p(θ/Y, 
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T2), θoptT2 for verification, is done based on the mean and maximum rainfall intensity. This 

criteria for deciding which rainfall characteristic to use for classifying a given verification 

rainfall event into group TI or T2 was obtained by applying a Classification Decision Tree 

(Breiman et al., 1984) and a PCA (Pearson, 1901), including four various potential rainfall 

characteristics as explicative variables (e.g. mean, max. rainfall intensity, ADWP and the 

beginning date of the event) without improving the performance of the Classification 

Decision Tree and the visual separation of the groups by PCA. In case no satisfactory 

separations (from the cluster technique) or explanations to the separations (from Classification 

Decision Tree, PCA or another data exploratory analysis) can be found, one can work with n 

= 1 and the estimation of p(θ/Y) will be undertaken directly as the marginal of all connected 

events. This will lead to obtain a very similar estimation as in SE Strategy, especially if the 

model structure is robust enough (in a transferability sense, see Bardossy and Singh, 2008) 

and parameters uncertainties are mostly due to local rainfall errors.   

With the purpose of verifying the geometrical consistency of p(θ/Y) (SE strategy),  p(θ/Y, T1) 

and p(θ/Y, T2) (SEConditional strategy), and therefore defining the “deepest” set of 

parameters for each function under an appropriate reference frame, six measures of statistical 

depth are explored, from the “ddalpha” package in R (R Development Core Team, 2017) (see 

details Pokotylo et al., 2016): Tukey depth (Tukey, 1974), Mahalanobis depth (Mahalanobis, 

1936), Projection Depth (Donoho, 1982), Spatial depth (Chaudhuri, 1996), Zonoid depth 

(Dyckerhoff et al., 1996) and Potential depth (Aizerman et al., 1970). Given that p(θ/Y) in the 

ME strategy is estimated from a global multi-event implementation of the likelihood function, 

the “deepest” set of parameters can be directly identified as the parameter set with the 

maximum likelihood. 

The benefits of the proposed strategy (SEConditional), regarding traditional parameter 

assessment strategies (SE, ME), are highlighted by comparing observed and simulated flow 

rates in 110 verification rainfall events. Three performance metrics are used for this purpose 

(comparable to e.g. Dotto et al., 2013; Ye et al., 2014; Del Giudice et al., 2016): (i) the NS 

criterion for accuracy (Eq 12); (ii) the ARIL criterion for precision (Vezzaro and Mikkelsen, 

2012) (Eq 13); (iii) the modified POC criterion for reliability (from e.g. Ye et al., 2014) (Eq 

14 and Eq 15).  

𝑁𝑆 =  1 − 
∑ (𝑌𝑠𝑖𝑚 (𝑡, θ𝑜𝑝𝑡) − 𝑌𝑜𝑏𝑠 (𝑡))

2
𝑛
𝑡=1

∑ (�̅�𝑜𝑏𝑠 − 𝑌𝑜𝑏𝑠 (𝑡))
2𝑛

𝑡=1

 

 

Eq 12 

 

𝐴𝑅𝐼𝐿 =  
1

𝑛
∑ 

𝐿𝑖𝑚𝑖𝑡𝑠𝑢𝑝,𝑡 − 𝐿𝑖𝑚𝑖𝑡𝑖𝑛𝑓,𝑡

𝑌𝑠𝑖𝑚 (𝑡, θ𝑜𝑝𝑡)

𝑛

𝑡=1

 
 

Eq 13 

 

𝐶𝑡 = {
1                 𝑌𝑜𝑏𝑠 (𝑡) − 2�̂�𝑡  ≤  𝐿𝑖𝑚𝑖𝑡𝑠𝑢𝑝,𝑡  𝑎𝑛𝑑 𝑌𝑜𝑏𝑠 (𝑡) + 2�̂�𝑡  ≥  𝐿𝑖𝑚𝑖𝑡𝑖𝑛𝑓,𝑡  

0                                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Eq 14 
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𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑃𝑂𝐶 =  
1

𝑛
∑ 𝐶𝑡

𝑛

𝑡=1

 
 

Eq 15 

where n is the number of flow rate data Yobs and �̅�𝑜𝑏𝑠 its mean value. Ysim(t, θ) is the simulated 

flow rate by the model at time step t from the observed rainfall Xobs and global optimal 

parameters θopt. 𝐿𝑖𝑚𝑖𝑡𝑠𝑢𝑝,𝑡 and 𝐿𝑖𝑚𝑖𝑡𝑖𝑛𝑓,𝑡 are the upper and lower limit for a confidence 

bound of 95 % at a time step t, obtained from p(θ/Y) or p(θ/Y, T1) and p(θ/Y, T2) depending 

on the case. The modified POC proposed for this work is based on the traditional POC 

(percentage of coverage) (see e.g. Ye et al., 2014) but also considering flow rate Yobs(t) 

standard uncertainty �̂�𝑡 (Eq 14 and Eq 15). The idea is that the modified POC includes as 

“reasonably explicable by the model” flow rate data that, with their measurement uncertainty, 

overlaps the parametric uncertainty bounds (similar to approaches such as Harmel et al., 

2007). This modified POC is a more flexible (in the sense that modified POC will deliver 

higher values than traditional POC) but realistic description of reliability than POC, as 

uncertainties in measurements are taken into account. 

The total simulated output uncertainty given by the residuals of the model from a set of 

optimal parameters is not completely captured by parametric uncertainties. This phenomenon 

can be attributed to remnant errors in calibration that are not accounted for by the input and 

structural error assumptions (Thyer et al., 2009). Therefore, the total simulation output 

uncertainty is estimated from propagating the parametric uncertainties given by p(θ/Y) (SE 

and ME strategy) and p(θ/Y, T1) or p(θ/Y, T2) (SEConditional strategy) as the ensenmble of 

multiple realizations of the model residuals. For comparative purposes, the total simulation 

output uncertainty is estimated by following the method proposed by Dotto et al. (2011). The 

residuals obtained from the rainfall events used in calibration (making the distinction between 

T1 and T2 for SEConditional) are binned as a function of modelled flow rates. This permits to 

construct probability distributions of residuals as a function of the modelled flow rate values. 

For a verification event, as the modelled flow rate value at t is a function of a set of 

parameters, a different probability distribution of residuals is obtained by considering each 

realization of p(θ/Y) (SE and ME strategy) or p(θ/Y, T1) or p(θ/Y, T2) (SEConditional 

strategy). The total uncertainty of simulated flow rate at t will be then given by the ensemble 

of all the probability distributions of residuals obtained at t, as a result of propagating the 

parametric uncertainties (see further details Dotto et al., 2011). Therefore, two 

complementary indicators, to be called Total ARIL and Total POC (modified), are calculated 

for the estimated total output uncertainty simulations in the 110 verification events. 

 

4.3 RESULTS AND DISCUSSION 

 

 

The results are divided into analyses of the calibration data (255 events), containing the 

assessment of the parameters by the 3 estimation strategies, jointly with the evaluation of the 

relation transferability - statistical depth of sets of parameters. Afterwards, the predictive 

capacity of the parameters estimations is evaluated with the verification data (110 events). 

The verification/calibration events are selected chronologically, an initial period for 

calibration and the subsequent period for verification. The influence of the selection of the 

calibration/verification data is also discussed. 

 

 



53 

 

Calibration: application of the parameters estimation strategies 
 

The correlation plot for parameter estimations θ (fc, f0, k, Td, K1, q) with the SE and ME 

strategies by using the DREAM algorithm are presented in Figure 19. It can be seen how 

considering uncertainties in the estimation of local set of parameters p(θ/Y)i brings up a higher 

dispersion in the p(θ/Y) global estimation rather than the sets of local optimal set of 

parameters θopt i (Figure 19a,b). 28 % of the rainfall events are identified as non-reproducible 

and therefore discarded for the SE Strategy, with NS <0.75 for the local estimation of set θopt i 

(red estimations of θopt i in Figure 19a and of p(θ/Y)i  in Figure 19b). As expected, the 

estimations of p(θ/Y) are less dispersed for ME than SE, given that more data are included in 

the likelihood function (Eq 11). 

a) 

 
b) 
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c) 

 
d) 

 
 

Figure 19. Correlation plot of parameters estimations (fc, f0, k, Td, K1, q) for 255 calibration events assessed by a) 

SE strategy local optimal set of parameters θopt i (grey) with discarded events NS < 0.75 (red); b) SE Strategy 

global function p(θ/Y) (grey) with discarded events (red); c) ME Strategy global optimal set of parameters θopt 

and d) ME Strategy global function p(θ/Y). 

Further analysis led in evidence that the propagation of p(θ/Y) over simulations for 

verification rainfall events are scarcely able to explain the observed flow rate values in the 

ME strategy, due to the narrowness of the obtained p(θ/Y) distribution (Figure 19d). This can 

be explained as in Bayesian (and frequentist) inferences, the parametric uncertainty declines 

asymptotically as more data is included in the calibration (Renard et al., 2010). The problem 

resides in “which” data should we include in the inference problem (selecting as with SE and 
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SEConditional Strategies). Correlations are an undesirable but common property when 

parameters are estimated. The infiltration parameters fc, f0 and k exhibited a global strong 

correlation in the ME strategy (Figure 19d). However, when local calibrations were done with 

SE, these parameters were identifiable for certain events and further formulations for 

modelling the infiltration process were less satisfactory. For this reason and with illustrative 

purposes of the potential of the application of the proposed methods to models with correlated 

parameters (as e.g. Guerrero et al., 2013), the model structure is kept (as in e.g. Sun and 

Bertrand-Krajeswki, 2013a) without further reformulations.    

The total 255 rainfall events are classified into T1 (blue, 32 % of calibration events), T2 

(green, 32 % of calibration events) or discarded (red, 36 % of calibration events) by applying 

the Supervised Cluster algorithm (spinglass.community) over the topological graph (Figure 

20b), given by the AM (Figure 20a). Indeed, the events labelled in red in the topological 

representation have their corresponding row or column in AM completely equal to zero 

(white). For example, in events from 173 to 222 (from 11/3/2008 to 9/13/2008), a more 

frequent non-reproducibility or disconnection of events is evidenced with a larger white stripe 

in the AM (Figure 20a), representing 53 % of the total disconnected events. These large 

groups of discarded events can be attributable to, e.g., particular climatologic conditions or 

systematic measurement errors during a specific period, given the temporal proximity of the 

events. All disconnected events are discarded for further hydrological analyses in this Chapter 

4 as explained in the methodology section.  

a) 
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b) 

 
c) 

 
d) 

 
Figure 20. a) AM for the calibration rainfall events; b) topological graph representation of AM, including the 

clusters obtained for T1 (blue), T2 (green) and disconnected events (red); c) PCA for T1 (blue), T2 (green) and 

disconnected events (red) and d) PCA for T1 (blue) and T2 (green) groups (explanatory variables: max intensity, 

mean intensity, beginning of the event and ADWP). 



57 

 

With the purpose of giving additional interpretation to the topological representation of the 

graph and separation groups (Figure 20b), a PCA is proposed to explain the differences 

between: (i) the groups T1 (blue), T2 (green) and discarded events (red) (Figure 20c) and (ii) 

the groups T1 (blue) and T2 (green) (Figure 20d). The explanatory variables are selected from 

previous tests and the idea of giving the simplest possible interpretation to the Cluster results 

in terms of temporality and pluviometry (scaled by a z normalization, see Kreyszig, 1979). 

PCA is then undertaken by focusing on four event characteristics: ADWP, beginning date of 

the event, mean rainfall intensity and maximum rainfall intensity (all variables are scaled to 

have zeroed mean and unitary standard deviation). No clear separation of the groups is 

obtained in Figure 20c, implying that a linear combination of the analyzed rainfall 

characteristics cannot explain the differences between T1 (blue) or T2 (green) with the 

discarded events (red). No special pattern in the temporal sequence of events as T1 (blue), T2 

(green) or discarded (red) is observed. 

Although the non-reproducibility of certain rainfall events can be attributed to temporality 

(from 11/3/2008 to 9/13/2008), a general explanation of why rainfall events are non-

reproducible by the CRR model is hardly supportable by rainfall physical characteristics, 

strengthen potential explanations such as the local nature of errors in rainfall measurements 

rather than the global nature of conceptual model uncertainties. On the other hand, Figure 20d 

shows a clear separation by explaining exclusively the differences between T1 and T2 

hydrological groups (blue and green). The rainfall events in group T1 or T2 are mainly 

distinguished because of the mean or maximum rainfall intensity (Figure 20d). The physical 

sense behind this finding is that the global function p(θ/Y, T1) with θoptT1 is more adapted to 

simulate high intense rainfall events (group T1) and the global function p(θ/Y, T2) with θoptT2 

is more appropriate to simulate low intensity rainfall events (group T2). For results in Figure 

20d, a Classification Decision Tree (Breiman et al., 1984) implemented in Matlab led to 

visualize that events are part of T2, except if their max intensity > 9 mm/h and their mean 

intensity > 1.6 mm/h, case in which they belong to T1, with a confidence of about 80 % 

(“fitctree” and “kfoldloss” functions from Matlab). This simplified classification and Figure 

20 bring up additional evidence that differences between group T1 and T2 and thus the 

transferability of the parameters estimations are mainly due to rainfall (intensity) and not 

temporal (ADWP, beginning of the event) inter-event characteristics. Accordingly, the use of 

p(θ/Y, T1), θoptT1 or p(θ/Y, T2), θoptT2 (SEConditional) for simulating a verification event is 

defined from this simplified classification rules into high or low intensity rainfall events (T1 

or T2).  

The correlation matrix plot for parameter estimations (fc, f0, k, Td, K1, q) by the SEConditional 

strategy by using the DREAM algorithm are presented in Figure 21.  
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a) 

 
b) 

 
Figure 21. Correlation plot of the parameters estimations (fc, f0, k, Td, K1, q)  for 255 calibration events, assessed 

by SEConditional Strategy: a) local optimal sets of parameters θopt iT1 (blue), θopt jT2 (green) with discarded 

(disconnected) events (red) (with i and j =1: number of events in T1 and T2 resp.) and b) conditional functions 

p(θ/Y, T1) (blue), p(θ/Y, T2) (green), with discarded (disconnected) events (red).  

It is worth to point out that the criterion in SEConditional for identifying non-reproducible 

rainfall events by the CRR model is more restrictive than the one adopted for SE (28 % and 

36 % of the calibration data resp.). A given rainfall event is discarded if the set of local 

optimal set of parameters are not able to satisfactorily reproduce further events from the 

dataset (NS > 0.75), although the local estimation brings a NS > 0.75 by itself. Nevertheless, 

72 % of the events discarded by SEConditional, are also discarded in SE strategy, implying 

again that irreproducibility and non-transferability of a certain set of local parameters seems 
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to be more related to potential errors in rainfall data than to deficiencies in the model 

structure. The idea that identifying more appropriate parameter set relies on the selection of 

time periods with similar hydrological characteristics (Seibet, 2003) is also strengthen by 

these findings. Situations in which all events are labeled as non-reproducible for 

SEConditional will suggest an inappropriate model structure or an extremely low repeatability 

of the model parameters.  

The proposed classification into T1 and T2 permits to separate bimodal behaviors of p(θ/Y) by 

two conditional functions p(θ/Y, T1) and p(θ/Y, T2). This can be especially noted in 

parameters Td and K, in which the blue and green distributions are considered as mixed in the 

grey marginal in SE strategy (Figure 19b and Figure 21b resp.). With further comparative 

purposes, a boxplot of the scaled estimations p(θ/Y) for SE, ME and p(θ/Y, T1) and p(θ/Y, T2) 

for SEConditional is presented in Figure 22. 

 
Figure 22. Scaled parameters boxplot of the estimations p(θ/Y) for SE, ME; with p(θ/Y , T1) and p(θ/Y , T2) for 

SEConditional. 

It can be noted that the medians of p(fc/Y), p(Td/Y) and p(K1/Y) are different from the medians 

obtained for their corresponding conditional distributions p(fc/Y,T1) and p(fc/Y,T2), p(Td/Y,T1) 

and p(Td/Y,T2), p(K1/Y,T1) and p(K1/Y,T2), due to the observed bimodalities in the marginal 

distributions (Figure 21). In addition, the dispersion of  p(fc/Y), p(Td/Y) and p(K1/Y) is higher 

than the dispersion obtained with the conditional distributions p(fc/Y,T1) and p(fc/Y,T2), 

p(Td/Y,T1) and p(Td/Y,T2), p(K1/Y,T1) and p(K1/Y,T2). This fact will directly influence the 

results to be obtained in the verification phase in terms of NS, ARIL and modified COP. 

These results are consistent with Fenicia et al. (2016), in which the variability of the response 

parameters (here the delay Td and lag time K1) of the catchment for each rainfall event is 

identified as the main degenerative factor on the results for ME calibrations. Coupling the 

results discussed in Figure 20d with findings presented in Figure 21b, one can establish that 

the rainfall intensities (high for type T1 or low for type T2) are the main explanatory factor in 

the observed bimodality of Td and K1.    
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Calibration: relation transferability-statistical depth of sets of parameters  
 

With the purpose of further analyzing the transferability of the different sets of parameters 

θopt i, the NS values for a rainfall event j evaluated with the optimal parameters θopt i, obtained 

from a different rainfall event i, are shown in a NSmatrix(i, j) (Figure 23). Contrary to the 

AM, the NSmatrix is not symmetric and its values are not binary (NS < 0 are set as zero for 

interpretability). The diagonal NSmatrix(i, i) has the highest NS values, as the set of local 

parameters θopt i are obtained with data from the rainfall event i. The mean of all rows for a 

given column NSmatrix(:, i) reflects the capacity of the rainfall event i to be simulated by the 

CRR model (reproducibility of events, Figure 23b). On the other hand, the mean of all 

columns for a given row NSmatrix(i, :) reflects the transferability of a local optimal set of 

parameter θopt i (Figure 23a). The NSmatrix is shown in Figure 23 jointly with the mean of 

rows and columns.         

 
 

 
Figure 23. NSmatrix with a) the mean of NS rows (transferability of a local set θopt i) and b) the mean of NS 

columns (reproducibility of the rainfall event i) with i = 1 : 255.         

The results regarding the mean of the columns in the NSmatrix are naturally coincident with 

the identified non-reproducible rainfall events by means of the strategies SEConditional (AM 

in Figure 20a), with lower mean NS for events 173 to 222 (from 11/3/2008 to 9/13/2008), for 

example. On the other hand, selecting an appropriate frame (statistical depth measure) might 

led to verify the geometric consistency of the p(θ/Y) estimation, where the mean row in the 
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NSmatrix for a θopt i (Figure 23a) is expected to be higher as θopt i is deeper into the function 

p(θ/Y) (SE strategy); or for the case of SEConditional strategy, θopt i (in T1 or T2) is deeper 

into p(θ/Y,T1) or p(θ/Y,T2) resp. (Bardossy and Singh, 2008; Guerrero et al., 2013).     

Hence, the geometric consistency of the estimations in SE strategy and SEConditional 

strategy is verified by comparing the “deepness” of θopt i into p(θ/Y) (SE strategy), or 

p(θ/Y,T1), p(θ/Y,T2) (SEConditional strategy) against the mean of columns for NSmartix(i, :) 

(transferability of θopt i) (Figure 24). The results from the statistical depths analyzed in this 

work are shown in Figure 24 with different definitions of statistical depth (see details in the 

Methodology section of this Chapter). For SE strategy, the depths of each θopt i are calculated 

by the cited depth definitions to the total of optimal set of parameters θopt i (grey Figure 24a), 

including for comparative purposes the θopt i from discarded events (red Figure 24a). In the 

case of SEConditional strategy, the depths of each θopt iT1 (blue), θopt jT2 (green) are 

calculated to the total of optimal set of parameters for each group, θopt T1 (blue) or θopt T2 

(green), with i and j =1 : number of events in T1 and T2 resp.      

 

a) 

 
 Mean NS (from Figure 23a) 
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b) 

 
 Mean NS (from Figure 23a) 

Figure 24. mean of NS rows (transferability of a set θopt i) (Figure 23a) versus different measures of statistical 

depth for a) SE strategy (θopt i in grey) and discarded events (red) (Figure 19a); b) SEConditional θopt iT1 (blue), 

θopt jT2 (green) with i and j =1 : number of events in T1 and T2 resp. (Figure 21a).  

Geometric consistency of the p(θ/Y) estimation in the SE strategy can be observed as the θopt i 

from discarded events (NS <0.75 in red) appeared to be swallower (less deep) into the p(θ/Y) 

function, especially when establishing as reference frames the Mahalanobis and Spatial depths 

(Figure 24a). For these reference depths, the θopt i values with higher mean NS (transferability 

from Figure 23a) also tend to be located in a geometrical deeper position among all the other 

local estimations of θopt i = 1:255 (correlation of 0.5 in Figure 24a). For the case of 

SEConditional strategy, discarded events are not included for the analysis as they cannot be 

linked to group T1 or T2 (blue and green resp., Figure 24b). The analyzed depth measures 

show as well strong enough correlations between the geometric depth of a given θopt iT1 

(blue) or θopt jT2 (green) set inside p(θ/Y,T1) or p(θ/Y,T2) and its transferability (Figure 24b).  

One should bear in mind that the evaluated correlations can be masked by the strong 

variability of the parameter sets. The analyses become more challenging, in terms of 

identification of correlations and computational calculation of depths, if the complete set of 

estimations for p(θ/Y) and p(θ/Y,T1) or p(θ/Y,T2) are included. For this reason, the analysis in 

Figure 24 is undertaken by local estimations θopt i (grey) and with θopt iT1 (blue) or θopt jT2 

(green) instead of the complete functions p(θ/Y) and p(θ/Y,T1) or p(θ/Y,T2). From this 

assumption and the correlation results shown by calculating the Mahalanobis depths in Figure 

24, the “deepest set” of p(θ/Y) and p(θ/Y,T1) or p(θ/Y,T2) is defined as the multivariate mean 

of the parameter sets, following the properties of this distance (Pokotylo et al., 2016). 

Therefore, for the verification phase, the global optimal parameters: i) θopt are calculated as 

the multivariate mean of all θopt i values for SE strategy (for non-discarded i events); ii) θoptT1 
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and θoptT2 are calculated as the multivariate mean of all θopt i or θopt j values in each type T1 or 

T2 for SEConditional strategy. 

Verification: accuracy, precision and reliability of the simulations 
 

The verification is undertaken with the 110 remaining rainfall events for each of the three 

approaches (SE, ME and SECconditional). Each verification rainfall event is classified as type 

T1 or T2 depending on the following rules: is T2, except if their max intensity > 9 mm/h and 

their mean intensity > 1.6 mm/h, case in which is T1. The values of parametric ARIL and NS 

are calculated from the flow rate simulations obtained from p(θ/Y) and θopt for SE or ME, and 

from p(θ/Y, T1) or p(θ/Y, T2) and θoptT1 or θoptT2 for SEConditional (Figure 25). 

a) b) 

  
c) 

 
Figure 25. a) NS b) ARIL and c) modifiedPOC criterion, for the 110 verification rainfall events, including the 

three studied parameter estimation approaches (SE, ME, SEConditional). 

The accuracy of the flow rate in verification for SEConditional shows an improvement 

according to the Nash-Sutcliffe (NS) criterion, from 0.4 to 0.6 for 50 % of the rainfall events, 

compared to the SE strategy (Figure 25a). A reduction of parametric uncertainty bounds in 

verification given by the ARIL values from 2 to 1.6, for 50 % of the verification rainfall 

events can be as well noticed for both strategies (Figure 25b). Furthermore, a Wilcoxon test 

(e.g. Hollander and Wolfe, 1999) shows that the mean of the NS and ARIL values in the 

SEConditional strategy are significantly higher and lower, respectively, than for the SE 

strategy (p-values <0.05). Parametric uncertainty bounds obtained by the SE and 

SEConditional approaches are equally reliable, in the sense that both are able to explain more 

than 95 % of the verification data (modifiedPOC Figure 25c). However, the SE strategy is 
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more alike to have the highest scores in the modifiedPOC criteria, as parametric ARIL values 

are commonly higher than 2 (mean width of uncertainty bound of about 200 % of the flow 

rate values), which can be considered as an overestimation of the parametric uncertainty 

(Figure 25b). This potential overestimation by the SE strategy, not only for the parametric 

(Figure 25b) but also for the total uncertainty (Figure 26a), might be indeed caused by 

simulating the flow rate from sets of optimal parameters obtained with events that are not 

necessarily linked from a hydrological point of view. These results stress the importance of 

carefully selecting the data to be used for parameter estimations and further hydrological 

simulation, considering that a selection strategy such as SEConditional shows superior results 

than SE in terms of accuracy (NS), precision (total and parametric ARIL) and reliability (total 

and parametric modifiedPOC) for verification events. 

The parametric ARIL values show that the uncertainty bounds in verification obtained by 

using the ME approach are much thinner (values close to zero), than those obtained with the 

other strategies (SE and SEConditional), besides a deficient accuracy given by NS in 

verification (Figure 25a, b). For this case, the simulations in verification can be considered as 

unreliable, as the modifiedPOC from parametric and total uncertainty reported that only about 

0.2 and 0.6, resp., of the measured values overlap the uncertainty bounds of the simulations 

(Figure 25c and Figure 26b). The almost inexistent parameter uncertainties reported by the 

ME strategy can be attributed to the asymptotically declining behavior of uncertainties when 

more data are included in Bayesian inferences (109860 flow rate continuous values of 255 

rainfall events). However, the parametric uncertainty given by ME is not considered to be 

realistic, as the total output uncertainty could only be then explained by hypothetical 

deficiencies in the model structure. The model structure demonstrated its robustness from the 

transferability analysis of the local parameters (AM Figure 20a) and therefore ME is not 

recommendable.  

In addition, parameters estimations from ME might contain important errors from rainfall, as 

events in which the model is not even able to reproduce the flow rate with a local calibration 

cannot be directly identified and discarded. Without abandoning the simulation context 

(Beven and Smith, 2014), further methods for dealing with the rainfall error detection under a 

ME parameter estimation approach might be obtained just on the expense of complicated 

statistical implementations whose departure assumptions are hardly verifiable (e.g. Pedersen 

et al., 2016).         

a) b) 

  
Figure 26. a) Total ARIL and b) Total modifiedPOC criterion, for the 110 verification rainfall events, including 

the three studied parameter estimation approaches (SE, ME, SEConditional). 
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The SEConditional strategy led to superior results than SE in terms of accuracy (NS), 

precision (total and parametric ARIL) and reliability (total and parametric modifiedPOC) for 

verification events (Figure 25 and Figure 26). However, even if SEConditional is used, the 

parametric and the total ARIL remain undesirability high (about 1.6 and 4.5, Figure 25b and 

Figure 26a, resp.) and the NS values undesirably low (about 0.6, Figure 25a).  

Undoubtedly, the model structure can be improved for the studied catchment and its 

calibration could also be fed by richer rainfall information (e.g. radar records), or more 

detailed spatial information systems (e.g. GIS, Digital Elevation Models), for example. On the 

other hand, one should bear in mind that the results for verification in this Chapter 4 are 

obtained from rainfall records that were unknown for the calibration phase, and therefore it is 

reasonable to think that there will be verification events with important rainfall errors, which 

at the end will significantly decrease the quality of the verification simulations (Thyer et al., 

2009). However, the potential rainfall error in a verification event will equally affect the 

simulations for all the adopted parameter estimations, offering also an equitable comparative 

frame among strategies SE, ME or SEConditional. For further generalization of verification 

results, one can hypothesize that the same proportion of discarded rainfall events (38 %) can 

be discarded as well from verification, taking the 62 % best results as a sure bet of “rain error 

free” estimations. This aspect can be addressed by further investigations.  

 

4.4 CONCLUSIONS 
 

The global nature of model structure uncertainty and the inter-event parametric variability is 

addressed for a CRR model based on the idea of dividing the parameters marginal probability 

function, obtained by event-by-event calibrations, into conditional probability functions, 

obtained by grouping the parameters from the event-by-event calibrations. For this purpose, 

an adjacency matrix that reflects how local parameter estimations are interconnected to the 

other calibration rainfall events is proposed with a transferability perspective (analogue to a 

leave-all-out scheme). The adjacency matrix is represented as a graph of connected rainfall 

events. The graph is analyzed by clustering techniques to determine the conditional 

probability functions. Two different hydrological conditions, given by the magnitude of the 

rainfall intensities (high or low), could be linked to a bimodal behaviour of the parameters 

marginal distribution. Furthermore, the proposed strategy allows identifying rainfall events in 

which the rainfall error is likely to be high enough to be considered as unreproducible events, 

at least by the selected CRR model. This approach is applied to 255 rainfall events.  

The results stress the importance of carefully selecting the data to be used for parameter 

estimations and further hydrological simulation, considering that the selective proposed 

parameter estimation strategy significantly improves the results of traditional parameter 

estimations from event-by-event and multi-event calibrations. The improvements achieved by 

expressing the event-by-event global parametric uncertainty into conditional probability 

functions are shown in terms of accuracy (Nash-Sutcliffe criterion), precision (total and 

parametric Average Relative Interval Length) and reliability (total and parametric Percentage 

of Coverage) for 110 verification events. The drawbacks of a multi-event calibration approach 

are exposed when facing a large enough calibration data-set (255 events). One single rainfall-

runoff model structure allows representing two groups of different hydrological conditions for 

an urban catchment by the proposed approach. 
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CHAPTER 5. METHODOLOGY FOR IDENTIFYING THE TEMPORAL 

DISTRIBUTION OF ERRORS IN RAINFALL TIME SERIES 

 

Extended version of: 

Sandoval S., Bertrand-Krajewski J.-L. (2015). Identification of errors in high temporal 

resolution rainfall time series by model based approaches. Proceedings of the 10th UDM - 

International Conference on Urban Drainage Modelling, Mont Sainte Anne, Quebec, 

Canada, 20-23 September, Oral Presentations II, 183-186. 

 

5.1 INTRODUCTION 

 

Experience indicates that, for some rainfall events with large spatial heterogeneity and/or 

significant movements of rain cells over the catchment, a single rain gauge cannot deliver 

representative rainfall intensities applicable to the entire catchment (mean areal rainfall 

intensity) (Leonhardt et al., 2014). Areal rainfall estimations by indirect methods are the 

object of intensive research e.g. by rainfall radar (Einfalt et al., 2004), satellite data (Kidd and 

Levizzani, 2011) or microwave links (Messer et al., 2006). Nevertheless, the accuracy of 

these approaches is still limited due to their nature of indirect measurements (Leonhardt et al., 

2014). Other sources of error in rainfall predictions can be also attributed to improper 

calibration of rain gauges and local instrumental uncertainties (e.g. Stransky et al., 2006). 

Generally, systematic and random components of rainfall errors (areal estimations and 

measurement errors) are not known in advance (in practical situations) and their structure can 

be complex and variable (Kavetski et al., 2006a; Schellart et al., 2012). 

 

Model-based approaches have emerged as a promising alternative for assessing rainfall areal 

estimations and uncertainties in rainfall data. Kavetski et al. (2006a) propose a multiplicative 

rainfall error identification model under the BATEA framework, which is widely used in the 

literature (e.g. Kavetski et al., 2006b; Vrugt et al., 2008; Renard et al., 2010; McMillan et al., 

2011; Sun and Bertrand-Krajewski, 2013a; Baroni and Tarantola, 2014; Leonhardt et al., 

2014) and will be adopted for our study. Renard et al. (2010) applies this methodology for 

identifying rainfall errors by means of a conceptual hydrological model. The original rainfall 

records are corrupted by means of random multipliers (errors and uncertainties around 20 %). 

The capability of identifying the errors which had been introduced is evaluated with suitable 

results. In Renard et al. (2010), as for e.g. Kavetski et al., 2006b; Vrugt et al., 2008; Renard et 

al., 2010; Baroni and Tarantola, 2014; Kretzschmar et al., 2016; Fuentes-Andino et al., 2017, 

the number and distribution of multipliers over the rainfall is usually one per event or day. 

However, the temporal scale of an urban catchment corresponds to faster responses. Thus, one 

multiplier for a whole rainfall event has been reported as insufficient in the context of urban 

drainage (Sun and Bertrand-Krajewski, 2013a). In addition, Vrugt et al. (2008) remarked that 

a single multiplier for each measurement leads to an unsolvable over-parametrized problem. 

Consequently, Sun and Bertrand-Krajewski (2013a) proposed to group data into different 

numbers of rainfall multipliers for a specific event. This approach is also implemented with 

the Bayesian Method, including the use of the DREAM algorithm (Vrugt et al., 2016). 

Nevertheless, estimations are based on average rainfall uncertainties of about 5 %, 

considering a uniform temporal distribution of the multipliers. In addition, parameters are 
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included within the calibration process, leading to possible interactions between parameters 

and rainfall multipliers estimation.   

 

Leonhardt et al. (2014) proposed a comparative study between the multiplicative rainfall error 

model (applied at higher temporal resolution, as Sun and Bertrand-Krajewski, 2013a) and the 

Reverse Modelling approach. For this case, the hydrological parameters are calibrated 

independently from the rainfall multipliers (by the Bayesian Method and the DREAM 

algorithm, see Vrugt et al., 2016). In addition, the Reverse Modelling approach is able to fill 

gaps in rainfall time series. However, the objective of Leonhardt et al. (2014) was not to 

evaluate the rainfall error prediction capacity by introducing known errors in rainfall.  

 

The proposed methodology seeks to evaluate the potential of four rainfall correction models 

for identifying and correcting errors in rainfall data. The response (simulated flow-rates) of a 

well-performing pre-calibrated rainfall-runoff model to corrupted rainfall data is used. 

Considering that the objective in this Chapter 5 is to focus on rainfall errors and not 

parameters estimations, 30 events in which the CRR model shows the most satisfactory 

performances are used for this purpose with local calibrated parameters (NS > 0.95) (from 

single-event calibrations in Chapter 4, see NS in Eq 12). The rainfall correction models are 

formulated by considering the inconveniences of the traditional multiplier approach, namely 

dealing with rainfall equal to zero (problem identified and discussed by several authors, e.g. 

Renard et al., 2010), by mixing the multiplicative error model and the reverse modelling 

approaches. Models also include a variable/constant time-window methodology that permits a 

uniform or non-uniform temporal distribution of the multipliers. Previous works are extended 

and coupled in the sense that: (i) higher multiplier values are introduced as errors with 

variable temporal distributions as areal rainfall errors can be higher and more complex, (ii) 

more general conclusions are drawn by the study of multiple rainfall events with real rainfall 

and runoff data, (iii) calibration independency between model physical parameters and 

rainfall multipliers calculation, iv) new error and more flexible correction models that contain 

additional information to generate precipitation with a Reverse Model (as suggested by Del 

Giudice et al., 2016) are proposed and compared and v) temporal correlation effect of the 

rainfall multipliers is analyzed. Recommendations about the best model and the best number 

of time windows are given based on criteria such as NS, RMSE and mass conservation. The 

methodology is applied to the Chassieu catchment with 30 rainfall events measured from 

2007 and 2008 (see Chapter 1). Rainfall error models evaluated in this Chapter 5 can be listed 

as follows: CTWrev (Reverse-constant-time-windows), VTWrev (Reverse-variable-time-

windows), CTW (constant-time-windows), and VTW (variable-time-windows). 

5.2 METHODOLOGY 
 

A general description of hydrological models is given in Eq 16 (notation consistent with 

Kavetski et al., 2006a, 2006b): 

 

𝑌 = ℎ(θ, 𝑋) Eq 16 

where Y constitutes the time series response (for this case flow-rate at the outlet in L/s) to 

another input vector X (rainfall intensity measured at a given rain gauge station in mm/h). The 

mathematical simplification aimed at describing the output Y from any input X is called the 

function h: X→Y, depending on the set of parameters θ. Given the model h and observations 

Xobs and Yobs, a pre-calibration phase is undertaken for each rainfall event separately, in which 
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the optimum parameters θopt of the model h are estimated in the sense of making Yobs as close 

as possible to Ysim. 

 

However, this pre-calibration phase for each rainfall event becomes only relevant to support 

the hypothesis of having a suitable mathematical description of the physical system. A good 

rainfall correction cannot be estimated if the original h model is not well calibrated, as errors 

from the pre-calibration phase might be included in the correction. The impact of this error is 

thought to be diminished by calibrating each event separately. The “true” parameters θopt of 

the model, obtained for each rainfall event in the pre-calibration phase, are retained for the 

evaluation of the rainfall correction models.  

 

Therefore, the hypotheses for the rainfall error correction model are: (i) the function h is a 

good enough description of the system, (ii) θopt obtained from the pre-calibration phase is well 

known and (iii) standard uncertainties due to the measurement device (pluviograph) in Xobs 

and in parameters θopt are negligible in comparison to introduced error components. 

Introduction of errors in rainfall 

 

Given these previous statements, whenever h is evaluated as 𝑌𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑=h(θopt, 𝑋𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑) for 

corrupted rainfall Xcorrupted, differences between Ycorrupted and Yobs are mainly caused by 

Xcorrupted. Xcorrupted is going to be produced based on the original rainfall Xobs, which is assumed 

to be the true rainfall, considering that 𝑌𝑠𝑖𝑚= h(θopt, 𝑋𝑜𝑏𝑠) ≈ 𝑌𝑜𝑏𝑠, from the pre-calibration 

phase. The rainfall Xcorrupted is obtained from the original rainfall Xobs by introducing a vector 

Kintro as Xcorrupted  = Xobs / Kintro (Figure 27). With the purpose of exploring the influence of 

systematic, higher and more complex error structures in the rainfall, the Kintro vectors are 

established as non-uniformly distributed time windows by the Monte Carlo method. 

Comparable error introduction schemes are used in previous studies (Renard et al., 2010). 
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Figure 27. Scheme of error introduction into true rainfall Xobs 

The first step of the scheme to create Xcorrupted is to define a number of Ncorrupted corruption 

time windows. For our case study, Ncorrupted is a randomly chosen integer from 3 to 25, with 

the purpose of exploring different type of error temporal distributions (Figure 27b). For more 

than about 25 windows, the Bayesian inference in the error correction models showed to be an 

ill-posed problem. For comparative purposes, the maximum number of Ncorrupted windows is 

therefore set to 25 windows for the introduction of errors. The definition of an ordered set 

Tcorrupted is based on the number Ncorrupted, as a set of points ti, Tcorrupted = {1, t2, 

t3,…, 𝑡𝑁𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑
}corrupted, with Ncorrupted = dur(Xobs), indicating the boundaries of a given time 

window as [ti, ti+1] (Figure 27c). Each pair of boundaries [ti, ti+1] is evaluated to build Kintro 

and evaluate the Xcorrupted vector (Figure 27d, e, f, g). The algorithm assigns a total of 80 % of 

the times a value to the corresponding window [ti, ti+1] (Figure 27e). This Kintro[ti, ti+1] value is 

obtained from a uniform distribution bounded from 0.1 to 2 (Figure 27e). A limit lower than 

0.1 is found to bring up unrealistic Xcorrupted (e.g. 500 mm/h). The upper limit of 2 is included 

for making results comparable with the rainfall corrections. In addition, for the purpose of 

simulating scenarios in which no rainfall is measured into a certain window of the rainfall 

event, the Xcorrupted[ti, ti+1] terms are forced to zero for 20 % of the times (Figure 27f). In those 

cases, the Kintro[ti, ti+1] is reported as NaN for comparative purposes among the rainfall 

correction models and numerical convergence (as in theory Kintro[ti, ti+1] should be equal to 

infinity for having a Xcorrupted[ti, ti+1]= 0). The Kintro vector is going to be the “known” error 

structure of the corrupted rainfall Xcorrupted. These two vectors are used to evaluate the 

performance of different rainfall correction models.  
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Rainfall correction models 

 

The rainfall correction models can be defined as a modification of the function h, in which a 

Kcorrection vector is introduced as an argument of the function h in the form shown in Eq 17:  

 

𝑌𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = ℎ(θ𝑜𝑝𝑡 ,  𝐾𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∙   𝑋𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑) Eq 17 

Kcorrection is going to be a multiplicative vector which corrects Xcorrupted aimed at giving the 

closest approximation of Ycorrected to the vector Yobs. It is called “Error correction model”. The 

input θopt is obtained from the pre-calibration phase for each rainfall event. 

  

Estimating Kcorrection multipliers may vary from simple calibration methods (Vaes et al., 2005) 

to the application of more sophisticated approaches like the Bayesian Method (Sun and 

Bertrand-Krajewski, 2013a; Vrugt et al. 2016). The DREAM algorithm has shown to be an 

appropriate parameter optimization method for non-linear and high dimensional hydrological 

models (Vrugt et al. 2016). In addition, the Bayesian method can lead to estimate the 

posterior probability distribution of each parameter, thereby extending its potential to assess 

uncertainties in hydrological input data (Kavetski et al., 2006a, 2006b). Therefore, the 

estimation of Kcorrection is undertaken by the Bayesian method implemented with the DREAM 

algorithm (30000 simulations for cases with the highest computational demand).  

  

The likelihood function within the Bayesian framework shows the degree of belief that a 

given vector Kcorrection has for making Ycorrected = Yobs. The inferred parameters Kcorrection are 

sampled from a uniform prior distribution p(Kcorrection). Henceforth, the posterior distribution 

of Kcorrection and its uncertainties can be computed by means of Eq 18, accepting certain 

hypotheses about the distribution of the residuals (see details in Leonhardt et al., 2014).  

 

𝑝(𝐾𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛/𝑦𝑜𝑏𝑠 , 𝑥𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑  , θ𝑜𝑝𝑡) = ∏
1

√2𝜋𝜎𝑦𝑗
2

𝑑𝑢𝑟(𝑌)
𝑗=1 exp(−

(𝑦𝑜𝑏𝑠𝑗−ℎ(𝜃𝑜𝑝𝑡 ,   𝐾𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛∙𝑥𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑))

2

2𝜎𝑦𝑗
2 ) . 𝑝(𝐾𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛)     

 

Eq 18 

where dur(Yobs) is the total length of the hydrograph (index j) and σyj is the standard deviation 

of the flow-rate measurements. This uncertainty can be obtained from knowledge about the 

measurement principle or experience. A single σy can be included as well as another 

parameter into the calibration process, assuming homoscedasticity of the residuals. For 

multiple residuals (heteroscedasticity) the approach of including σyj as multiple parameters 

into the likelihood function is not commonly addressed, as the number of parameters will be 

increased dur(Yobs)  times, leading to an ill-posed problem (Renard et al., 2010). For the study 

case σyj is included as known values from flow-rate uncertainties (see details in raw data 

description, hydrological model and pre-calibration phase section). For instance, the 

hypothesis of normality of residuals for the rainfall correction model implicit in Eq 18 is 

retained as for previous studies (e.g. Sun and Bertrand-Krajewski, 2013a). Likelihood 

functions with flexibility in this hypothesis are still object of intensive research (e.g. Schoups 

and Vrugt 2010; Evin et al., 2014).   

 

It should be noted that this Bayesian function (Eq 18) does not include information about 

rainfall uncertainties, as the idea is to replicate a scenario in which knowledge about rainfall is 

limited and uncertainties due to the measurement principle are negligible in comparison to 

systematic error components with complex and well defined temporal structures. For this 

reason: (i) a rainfall term is not included in the likelihood function (e.g. Sun and Bertrand-
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Krajewski, 2013a) and (ii) the prior distributions p(Kcorrection) are assumed to follow a uniform 

probability distribution (e.g. Sun and Bertrand-Krajewski, 2013a), bounded from 0 to 2. The 

bounds of the distribution are given due to the hypothesis and limitations in the introduction 

of errors into the rainfall (see introduction of errors in rainfall section). A prior uniform 

distribution assumption of p(Kcorrection) might be recommendable just for situations in which a 

priori knowledge about rainfall errors is extremely vague (adapted from Kavetski et al., 

2006a and Renard et al., 2010).  

 

Equally / non-equally sized time windows 

 

The distribution of the 𝑁 correction factors to be calculated by the Bayesian method along the 

Kcorrection vector is proposed to be done by constant or variable length time windows [ti, ti+1], 

defined from an ordered set T= {1, t1, t2, t3,…,tN }, with tN = dur(Xobs) (analogous to Tcorrupted 

in the introduction of errors in rainfall, which is unknown for the rainfall correction model). 

Two ways of distributing the correction time windows along the Xcorrupted vector are proposed: 

equally or non-equally sized (to be called Tc and Tv respectively). 

 

Equally sized: the corrupted rainfall intensity time series Xcorrupted can be divided into equally 

spaced time windows Xcorrupted[ti, ti+1], from an ordered set Tc = {1, t1, t2, t3,…,tN}c with tNc = 

dur(Xobs), that satisfies the condition dur([ti, ti+1]c)·N = dur (Xobs), for any window i from 1:N. 

The rainfall in each [ti, ti+1]c interval is corrected by Eq 18 with the associated correction 

factor Kcorrection [ti, ti+1]c. This approach was already proposed in the literature e.g. Sun and 

Bertrand-Krajewski, (2013a). 

 

Non-equally sized: for this case, the set Tv is calculated by a more elaborated procedure, using 

the flow-rate residuals signal Qres (difference between measured and simulated flow-rates) 

defined in Eq 19. 

 

𝑄𝑟𝑒𝑠 = 𝑌𝑜𝑏𝑠 − ℎ(θ𝑜𝑝𝑡, 𝑋𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑) Eq 19 

 

An auxiliary set Tv
*
 is defined as an ordered set of time values Tv

*
 = {1, t1, t2, t3,…,tN}v

*
, in 

which a priori 𝑄𝑟𝑒𝑠[Tv
*
] = 0 and tNv

* 
= dur(Yobs) (point with change of sign in the residuals, 

including borders). The number of time windows in Tv
*
 is N

*
, with i from 1:N

*
. Nevertheless, 

tests showed that N
*
 is commonly higher than the desired number of parameters N to be used 

as an input in the rainfall correction models (due to uncertainties and variabilities in the flow-

rate). With the purpose of establishing a Tv
*
 group that has a number of time windows N

*
 

equal to or close to N (number of corrections pre-defined to be used in the rainfall correction 

model), the signal 𝑄𝑟𝑒𝑠 is filtered by a median filter MF as 𝑄𝑟𝑒𝑠
𝑀𝐹=MF(𝑄𝑟𝑒𝑠, α), using the 

parameter α (see details Arce, 2005). The parameter α is defined as the value which permits 

N
*
 ≈ N, for 𝑄𝑟𝑒𝑠

𝑀𝐹[Tv
*
] = 0, with tNv

* 
= dur(Yobs) (points with change of sign, including borders). 

The parameter α is obtained by a simple search process.  

 

The Tv
*
 set can be expected to show a pattern consistent with the time windows Tcorrupted 

(supposed to be unknown in practice), used to create the rainfall Xcorrupted with Kintro (see error 

introduction section). However, both sets are not still comparable given that Tv
* 

is defined 

over the length of the flow-rate dur(Yobs) and Tcorrupted should be defined over the length of the 

rainfall dur(Xobs). Consequently, the length and location of each time window in Tv
*
 defined 

from 𝑄𝑟𝑒𝑠
𝑀𝐹[Tv

*
] = 0 must be projected into the rainfall series in order to be applied with the 
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rainfall correction model. Therefore, the ordered set of N (number of correction elements) 

Tv={1, t1, t2, t3,…,tN}v, with tNv
 
= dur(Xobs), is defined by scaling Tv

*
, based on the total 

duration of rainfall intensity dur(Xobs) and runoff dur(Yobs) time series. Kcorrection is then 

established by windows Kcorrection[ti, ti+1]v, from the proposed Tv set (Eq 17). It should be noted 

that whenever the argument of the function Xcorrupted would have been Xobs in Eq 19, the 

mean[𝑄𝑟𝑒𝑠] ≈ 0 and the number of N
*
 elements of Tv

*
 would have tended to the length 

dur(Yobs). This will occur given the fact that 𝑄𝑟𝑒𝑠will get closer to the white noise behavior, 

with a variance equal to σyj, with j=1:dur(Yobs). 

 

Reverse modelling 

 

Eq 18 is unable to correct the rainfall whenever Xcorrupted = 0. This situation is frequent within 

rainfall events (especially for short temporal resolution, typical in the urban drainage context 

e.g. Leonhardt et al., 2014), which is represented by introducing 20 % of the time windows as 

zero in the error introduction scheme (Figure 27f). The reverse problem consists in obtaining 

an Xrev rainfall time series that would have produced the measured runoff by rearranging the 

equations (whenever it is possible) or by the use of iterative methods (Leonhardt, 2014). 

Therefore, an alternative to Eq 18 for Xcorrupted = 0 can be proposed based on Xrev time series 

(Eq 20 and Eq 21).  

 

 𝑋𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑
𝑟𝑒𝑣 = {

 𝑋𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑   𝑖𝑓      𝑋𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑   > 0   

𝑋𝑟𝑒𝑣           𝑖𝑓       𝑋𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑  = 0  
               

 Eq 20 

 

 

𝑌𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = ℎ(θ𝑜𝑝𝑡, 𝐾𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 .  𝑋𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑
𝑟𝑒𝑣 ) 

 

Eq 21 

 

Reverse modelling can create a new rainfall time series without using rainfall measurements. 

This can be appropriate for cases in which no rainfall records are available (e.g. Leonhardt, et 

al., 2014). However, as single reservoir lumped models work as low pass filter smoothing the 

output, their reverse formulation usually amplifies the noisy behavior of the flow-rate signal 

over the rainfall estimation (Leonhardt, 2014). Consequently, reverse modelling can be quite 

sensitive to uncertainties in flow-rate data, bringing up highly uncertain solutions. In addition, 

non-meaningful physical results can be obtained (e.g. negative intensities). Therefore, Xrev is 

proposed to be used exclusively when Xcorrupted = 0 instead of replacing Xcorrupted completely by 

Xrev. This approach permits to include a reasonable dynamical behavior of the signal, without 

increasing dramatically the uncertainties and noisy components (consistent with sugesstions 

in Del Giudice et al., 2016). In addition, further tests showed strong benefits regarding the 

convergence of the DREAM algorithm by the approach in Eq 20 and Eq 21, compared to 

variations in which a constant value is introduced in gaps with Xcorrupted  = 0 (e.g. the mean of  

Xcorrupted  > 0 or an additive term). This might indicate that coarseness of the temporal 

resolution into the correction models (low or high N values) might have an important effect 

over their performance. This question is further addressed in this chapter.  
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Description of each rainfall correction model and evaluation scheme 

 

Four rainfall correction models can be established from Eq 17, Eq 20 and Eq 21, based on the 

“error correction model” concept. The results of these models are computed with the 

maximum likelihood estimation of each Kcorrection vector.  

 

 

- CTW: Y1corrected=h(θopt, K1correction[ti, ti+1]c ∙ Xcorrupted) over equal length time windows [ti, 

ti+1]c (from Eq 17).  

 

- VTW: Y2corrected=h(θopt, K2correction[ti, ti+1]v ∙ Xcorrupted), over variable length time windows [ti, 

ti+1]v determined by the proposed method (from Eq 17).  

 

- CTWrev: Y3corrected=h(θopt, K3correction[ti, ti+1]c ∙ Xcorrupted), over equal length time windows 

(from Eq 20 and Eq 21).  

 

- VTWrev: Y4corrected=h(θopt, K4correction[ti, ti+1]v ∙ Xcorrupted), over variable length time windows 

[ti, ti+1]v determined by the proposed method (from Eq 20 and Eq 21). Model CTW is already 

described in the literature (Sun and Bertrand-Krajewski, 2013a).  

 

The three additional models (VTW, CTWrev and VTWrev) are established based on the 

variable-size time-windows and reverse model inclusion. The four models are tested to 

evaluate their ability to detect the generated controlled errors and re-construct the original 

rainfall time series. 

 

Thirty error scenarios are introduced within the original rainfall time series (Figure 28), 

assumed as the known or controlled errors. Therefore, 30 Xcorrupted  time series are tested 

(Figure 28a, b) to be corrected by each of the four rainfall error correction models (CTW, 

VTW, CTWrev, VTWrev). A given number of time windows N are proposed following a 

uniform distribution, for each Xcorrupted to be corrected by the models (Figure 28c). The 

evaluation process is detailed in Figure 28d. The scheme in Figure 28 has the purpose of 

guaranteeing that the same number of parameters N are used to correct a Xcorrupted time series 

(an iteration), making the results comparable across the models. In addition, the performance 

results (Figure 28e) can be grouped by the number of time windows N used in each iteration. 

This permits a performance comparison of corrections against different N values for any 

rainfall correction model.   
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Figure 28. Scheme for evaluating the performance of the rainfall correction models (CTW, VTW, CTWrev and 

VTWrev) in 30 different �̃�𝑜𝑏𝑠 error scenarios, for a given rainfall event.  

The proposed methods are applied to the 30 rainfall events described in the introduction of 

Part 2. For each event, the observed rainfall Xobs is corrupted for 30 iterations, bringing up 30 

different scenarios of Xcorrupted (Figure 28), including different values for Ncorrupted, Kintro[ti, ti+1] 

and zeroes windows. Two main performance indicators are considered: the NS coefficient (Eq 

12) and the RMSE (Root Mean Square Error), considering the maximum likelihood 

estimation of each Kcorrection vector. Mentioned indicators are calculated by for Y1corrected, 

Y2corrected, Y3corrected and Y4corrected compared to Yobs (Figure 28e). Therefore, the variability of 

the performance (NS and RMSE) of each model is analyzed, for each iteration, in each event 
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(900 cases for each rainfall correction model). Regarding uncertainties analyses about 

Kcorrection, the 95 % confidence bounds CB95 are calculated for all probability density functions 

(pdfs) of Kcorrection[ti, ti+1] as a non-parametric measurement of dispersion. The CB95 value is 

different for each time window [ti, ti+1], for a given iteration and a given rainfall event. For 

verifying the uncertainties of Kcorrection in each model with a single value of a CB95 value 

representative of the whole number of corrections N, a weighted-over-time indicator is 

proposed in Eq 22, to be called CB95_weighted.  

 

𝐶𝐵95_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 
1

𝑑𝑢𝑟(𝑋)
∑(𝑡𝑖+1 − 𝑡𝑖) ∙ 𝐶𝐵95(𝑘𝑖𝑛𝑡𝑟𝑜[𝑡𝑖, 𝑡𝑖+1])

𝑁

𝑖=1

 

 

Eq 22 

 

Eq 22 gives the weighted average of the 𝐶𝐵95 value for each influence window [ti, ti+1], over 

the rainfall event. Consistently, there will be a single 𝐶𝐵95_weighted value for a given iteration 

and a rainfall event (900 values in total). The Bayesian approach permits as well to explore 

correlations among the different Kcorrection[ti, ti+1] pfds (verifying aspects such as identifiability 

of the parameters). With the purpose of exploring correlations among the different Kcorrection[ti, 

ti+1] pdfs parameters, the number of times in which ρ(Kcorrection[ti, ti+1], Kcorrection[tj, tj+1]) (for i 

and j 1 : N and i < j) has a p-value < 0.05 are counted and divided into the number of 

comparisons, i.e. N/2∙(N-1). These statistics to be called prob(ρsig) give the probability of 

having a significant correlation, for a couple of parameters distributions Kcorrection[ti, ti+1] and 

Kcorrection[tj, tj+1], obtained in a given iteration, for a rainfall event. There will be 900 prob(ρsig) 

values in total for each model, as for NS, RMSE and 𝐶𝐵95_weighted statistics. 

 

5.3 RESULTS AND DISCUSSION 

 

Regarding a single-event analysis, results are shown for the rainfall event measured from 

11/02/2007 23:06 to12/02/2007 07:12. Figure 29 compares the measured hydrograph (blue), 

the hydrograph produced by a rainfall with generated errors (black) and with the rainfall 

corrected (red) by a well-performing iteration into the CTW model. Figure 30 shows the 

differences between identified and controlled errors Kcorrection and Kintro, with illustrative 

purposes. The error structure is acceptably predicted over time as Kcorrection - Kintro ≈ 0.  
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Figure 29. Hydrographs: measured (blue), produced by corrupted rainfall (black) and produced by corrected 

rainfall (red) by CTW model. 

 

 

Figure 30. Well performing iteration of the K factor: Kcorrection (red) and Kintro (black) by CTW model. 

From an analysis at inter-event scale (30 events, 30 iterations per event), the values of 

adjustment between the original and corrected runoff are shown in Figure 31a, b. The 

performance of models can be listed as follows (from the most to the least performant): 

CTWrev, VTWrev, CTW, and VTW, in both terms of NS (Figure 31a) and RMSE (Figure 

31b). This can be explained by fact that the models CTW and VTW are not able to correct 

rainfall with zeros records that are introduced as “known” errors. 
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a) b) 

  

Figure 31. a) NS coefficient and b) RMSE between the original and runoff produced by corrected rainfall (for 

CTW, VTW, CTWrev and VTWrev models) (30 events, 30 iterations). 

The mass balance analysis (total volumes per event and iteration, i.e. 900 values) with 

corrected rainfall compared to Xobs confirms an underestimation of rainfall total volume by 

models CTW and VTW (Figure 32a, b). This leads to envisage the importance of including 

terms for correcting zero rainfall into the correction models without falling into an ill-posed 

problem, as discussed by Del Giudice et al., 2016 and in the following lines. In addition, 

results shown in Figure 32 are in agreement with Renard et al. (2010), in which rainfalls with 

larger volumes (total volume > 10 mm) are corrected much more precisely than smaller 

events (total volume < 10 mm) (especially for CTWrev and VTWrev in our research, Figure 

32c, d).  
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a) b) 

 
 

c) 

 

d) 

 

  

Figure 32. Total rainfall volume between the original and corrected rainfall, for a) CTW, b) VTW, c) CTWrev 

and d) VTWrev models (30 events, 30 iterations). 

The rainfall correction based on reverse modelling coupled with the Bayesian method 

(CTWrev and VTWrev) offers a suitable strategy for dealing with zero rainfall records in 

terms of convergence. This can be explained as the reverse model gives an appropriate “clue” 

or reference point to the Bayesian optimization problem: the Xrev is produced by flow-rate 

values with a smooth enough behavior from the pre-calibration phase (NS > 0.95). In 

addition, the Kcorrection values contribute to compensate fragments of 𝑋𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑
𝑟𝑒𝑣  mixed with the 

Xrev solution and original Xcorrupted values to be corrected. This fact makes as well the 

𝐶𝐵95_weighted values of Kcorrection (weighted uncertainties) lower for the reverse-based models 

than for CTW and VTW, with 𝐶𝐵95_weighted of about 0.6 for CTW to 0.2 in VTWrev (Figure 

33a). Coefficients of variations CVs are about 17 % for CTW to 5 % in VTWrev. This result 

is comparable to Renard et al., (2010) who found CVs of about 13 % for the correction factors 

in their rainfall correction implementation. 

 

However, one should bear in mind that for our study case it is feasible to arrange the 

equations of the hydrological model (Eq 8, Eq 9 and Eq 10) in their reverse form. This 

situation is not frequent in a massive number of hydrological models for urban catchments. 

Therefore, reverse formulation should be undertaken by iterative methods, which can severely 
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increase the computational demand of the correction models CTWrev and VTWrev (adapted 

from Leonhardt, 2014). Further cases should be examined for evaluating the pertinence of 

using the reverse approach for more complex hydrological models. Indeed, for cases in which 

reverse formulation is not feasible, alternative approaches for dealing with zero records can be 

proposed, always being aware about the well-posseness of the problem.  

 

The proposed variable time window approach (in VTW and VTWrev) deteriorates the quality 

of the predictions (Figure 31a, b). This can be explained by the hypotheses established for this 

method (e.g. linear transformation from Tv
*
 to Tv) in addition to its sensitivity to the α 

parameter. For many cases, the filter reported too short (or long) windows, leading to a not 

equitable repartition of the error corrections. The corrections made into very short windows 

(e.g. 6 minutes) do not have an effect on the flow-rate values generated by the corrected 

rainfall. Uncertainties for this correction Kcorrection[ti, ti+1] over a short window (e.g. 6 minutes) 

are higher, but their influence over 𝐶𝐵95_weighted is lower (as this indicator is a weighted 

average depending on the duration of each window). For this reason, uncertainties 

(𝐶𝐵95_weighted) are slightly lower for variable-time-windows approaches (Figure 33a). The 

number N of correction windows for the Bayesian correction model tends to be used in a more 

“efficient” way by the constant time-window models (CTW and CTWrev). Additional 

explorations are undertaken by the use of Step Detection algorithms (e.g. Canny, 1986; 

Sandoval and Torres, 2013) aimed at distributing the time windows over the rainfall. The 

mentioned approach didn’t show significant improvements of the results. Nevertheless, 

further explorations can be proposed towards this aspect.  

 

a) b) 

  

Figure 33. a) 𝐶𝐵95_weighted and b) prob(ρsig) statistics (for CTW, VTW, CTWrev and VTWrev models) (30 events, 

30 iterations). 

 

Another question herein addressed is the appropriate number of time windows N to be 

included into the rainfall correction models. Figure 34 shows the NS coefficients given by the 

four rainfall correction models, for different N values. Regarding the variable time-window 

models (especially VTW), the performance is lower than for the other models. In addition, the 

increment of NS coefficients as a function of N is less clear. In multiple cases, the correction 

shows less good results, although the number of windows N is high enough (e.g. 25 % of the 

NS coefficients < 0.4, for N = 16) (Figure 34b). This confirms the previously mentioned 

drawback about the variable time window approach: an inappropriate distribution of the error 

correction terms. Therefore, recommendations about the N selection for time window variable 
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approaches are harder to suggest. For the case of CTW, CTWrev (best performing model) and 

VTWrev, a number of time windows N of about eight seems to be the point beyond which no 

significant improvement is made (Figure 34a, c, d). These results can be compared with 

previous studies, in which preliminary recommendations about the number of time windows 

N are given (12 to 50 time windows) (Sun and Bertrand-Krajewski, 2013a). 

Recommendations from Sun and Bertrand-Krajewski, (2013a) about N can be higher due to 

facts such as: (i) the estimation of the Kcorrection multipliers jointly with the calibration of 

parameters, (ii) the evaluation is done with different performance measurements (RMSE 

instead of NS) and (iii) results are obtained from a synthetic case study.  

a) b) 

  

c) 

 

d) 

 

Figure 34. NS coefficient between the original and runoff produced by corrected rainfall vs the number of N time 

windows (ki parameter), for (a) CTW, (b) VTW, (c) CTWrev and (d) VTWrev models (30 events, 30 iterations 

with different N values). 

The error correction models assume a perfect correlation of rainfall uncertainties among all 

the time steps that belong to window [ti, ti+1], as the pdf of the parameter Kcorrection[ti, ti+1] is 

constant over [ti, ti+1]. This hypothesis should be established, as calculating a different pdf for 

each time-step leads to an ill-posed over-parameterization problem. However, correlation 

between two consecutive random variables Kcorrection[ti, ti+1] and Kcorrection[ti+1, ti+2] can be 

expected to be much lower, as they are two independent parameters into the calibration 
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process, theoretically uncorrelated to be fully identifiable. These correlation values among the 

Kcorrection parameters are against identifiability, i.e. if Kcorrection[ti, ti+1] and Kcorrection[ti+1, ti+2] 

are highly correlated, a more parsimonious correction model can be proposed making 

Kcorrection[ti, ti+1] = Kcorrection[ti+1, ti+2]. However, completely uncorrelated Kcorrection parameters 

(p-value < 0.05) will dismiss the temporal structure of the process to be represented. For our 

case study, the prob(ρsig) statistics is in average about 0.6 for all iterations and rainfall events 

(Figure 33b). This means that there is a probability of about 60 % to find a couple of 

parameters Kcorrection[ti, ti+1], Kcorrection[tj, tj+1] that are significantly correlated (p-value < 0.05). 

This indicator can bring insights about an appropriate balance between representation of the 

correlation along the temporal structure and parsimony of the model. However, this aspect is 

strongly recommended to be further addressed in future investigation. 

 

Complementary results led in evidence the benefits of the reverse-based models. Trend tests 

revealed that there is a steeper trend to diminish the mean NS coefficients (mean of 30 

iterations) as dur(Xobs) of rainfall events gets longer for CTW and VTW (Figure 35a). 

Analogous results are obtained with the increment of mean RMSE (mean of 30 iterations) as 

rainfall mean intensities during the event (Xcorrupted) (mm/h) are higher (Figure 35b). In 

addition to the slope of the trend, mean NS and RMSE (mean of 30 iterations) are shown to 

perform better for reverse-based models, independently of dur(Xobs) and Xcorrupted (Figure 35). 

 
a) b) 

  

Figure 35. Trend analysis for a) the rainfall duration dur(Xobs) vs the NS between the original and runoff 

produced by corrected rainfall (mean of 30 iterations) and b) the mean rainfall intensity Xcorrupted vs the RMSE 

between the original and runoff produced by corrected rainfall  (mean of 30 iterations) (for CTW, VTW, 

CTWrev and VTWrev models). 

 

5.4 APPLICATION OF RAINFALL CORRECTION TO IDENTIFIED EVENTS 

WITH IMPORTANT UNCERTAINTIES IN RAINFALL MEASUREMENTS 

 

The purpose of this section is to present the results of applying the proposed rainfall 

correction model by mixing the Bayesian and reverse approaches from Chapter 5 (CTWrev) 

to rainfall events hypothesized to be severely influenced by rainfall errors in Chapter 4 (the 

discarded 38 % of the 255 calibration events). For correcting rainfall in events with important 

errors in rainfall measurements by means of CTWrev, a set of parameters must be defined to 

recreate the backward rainfall intensity from flow rate observations. Given that from analyses 
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in Chapter 4 is established that there are at least two hydrological conditions that need to be 

separated in order to obtain meaningful results with the selected CRR model, the rainfall 

events can in principle be classified as T1 or T2 by using the Classification Decision Tree 

presented in Chapter 4. By classifying the rainfall events to be corrected as T1 or T2, the set 

of “optimal” parameters θoptT1 or θoptT2 can be used in the reverse formulation of the CRR 

model to obtain a more appropriate reconstruction of the rainfall intensity. However, one 

should bear in mind that rainfall events to be corrected will need to be classified as T1 or T2 

by means of “uncertain” rainfall characteristics. A simple solution is to classify the events to 

be corrected by using their characteristics and verifying if, once the rainfall is corrected, the 

Classification Decision Tree assigns the rainfall event in the same group than before the 

correction. For the analyzed events, around 80 % are classified into the same departure group 

(T1 or T2). In case that the reclassification gives different results with the corrected event, an 

iterative process can be started until the group assignation converges. For the studied rainfall 

events, after the second reclassification practically all the events remained in the same group 

(T1 or T2). 

 

A plot comparing the original rainfall intensities from discarded events in parameters 

estimation (presented as red events in Chapter 4, Figure 18) versus the corrected rainfall 

intensities by means of the rainfall correction model CTWrev (from Chapter 5) and the final 

classification T1 (blue) and T2 (green) is presented in Figure 36. 

 
 

Figure 36. Measured versus corrected rainfall intensities (mm/h) for the discarded rainfall events from analysis 

in Chapter 5, including the final reclassification into T1 (blue) and T2 (green).  

 

Figure 36 demonstrates from another perspective the hydrological difference of the data set in 

terms of “low intensity” and “high intensity” rainfall events, as corrections for both cases 

exhibit separated behaviors. The measured rainfall intensities from group T2 (green) are 

mainly corrected by a lower value, suggesting that over-estimations might be the principal 

source of error in rainfall measurements of non-reproducible (red) high intensity events. On 

the other hand, for the non-reproducible events (red) that can be associated with the lower 

intensities group T1 (blue) when rainfall is corrected, measured rainfall intensities are 

generally lower than the proposed mean areal rainfall reconstruction. The importance of the 
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reverse model in the rainfall corrections is reflected for both cases as rainfall intensities with 

zero values are corrected with intensities that can be up to 16 mm/h and 4 mm/h, for group T2 

and T1, respectively. The rainfall intensities in group T2 (green) are more separated, as the 

rainfall measurement resolution becomes thicker for higher intensities. The rainfall correction 

carried out over the initially non-reproducible events (red) reported a NS > 0.8, for more than 

85 % of cases. Therefore, all the estimated rainfall corrections are retained as representative 

However, a discrete classification of the events into two groups for representing the inter-

event variability might lack of physical interpretability regarding the boundary between 

groups (highest or lowest rainfall intensity), which at the end is model and data dependent.   

For further analyses in Chapter 6, the measured rainfall intensities R in the 365 events are 

tested as a potential input for different TSS stormwater models. Potential benefits of 

employing the corrected rainfall calculated in this section Rcorr as an alternative input for TSS 

stormwater models are evaluated with the same 365 events, but replacing R for Rcorr in the 

non-reproducible events (red).   

 

5.5 CONCLUSIONS 

 

A model-based approach is presented which aims to correct rainfall measurements and assess 

their uncertainties. Four error correction models are formulated, by mixing the Bayesian and 

Reverse approaches, jointly with the implementation of a constant/variable time-window 

method. The error’s predictability is evaluated by introducing rainfall errors (10 % to 200 %) 

with variable time-windows in a well-performing pre-calibrated rainfall-runoff model. The 

methodology is applied to the Chassieu catchment.  

 

From an analysis at a multi-event scale (30 events, 30 iterations per event), models can be 

listed in decreasing order of performance: CTWrev, VTWrev, CTW, and VTW, in terms of 

RMSE and NS coefficients, independently of duration or mean intensity of the events. The 

mass balance analysis with corrected rainfall confirms an underestimation of rainfall total 

volume by models CTW and VTW. This leads to envisage the importance of including 

informative terms for correcting zero rainfall into the correction models (Del Giudice et al., 

2016). Results show that rainfalls with larger volumes (total volume > 10 mm) are corrected 

much more precisely than smaller events (total volume < 10 mm), especially for CTWrev and 

VTWrev. Uncertainties in the corrections are lower for the reverse-based correction models as 

well. 

 

The proposed variable time-window approach (in VTW and VTWrev models) tend to 

deteriorate the quality of the predictions. This can be attributed to the hypothesis in the 

variable time-windows definition method that leads to a not equitable repartition of the error 

correction windows. However, uncertainties of corrections factor for this variable time-

window approach are slightly lower (temporal-averaged means of 95 confidence bounds from 

0.6 to 0.2 and CVs from 17 % to 5 %) as highest uncertainties are found during shortest 

windows along the rainfall duration. A minimum number of about eight corrections (time 

windows) within a rainfall event can be recommended for the CTW, CTWrev, and VTWrev 

models. Trend tests shows that there is a steeper trend to diminish the NS values as the 

duration of the events gets longer for CTW and VTW models. Similar results are obtained 

with the increment of RMSE as rainfall mean intensities of the event are higher. 
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GENERAL CONCLUSIONS OF PART 2 

 

In Chapter 4 the nature of model structure uncertainty and the inter-event parametric 

variability is addressed for a CRR model based on the idea of assessing the parameters 

marginal probability function obtained by event-by-event calibrations into conditional 

probability functions obtained by grouping the parameters from the event-by-event 

calibrations. The results stresses the importance of carefully selecting the data to be used for 

parameter estimations and further hydrological simulation, considering that the proposed 

parameter estimation strategy significantly improves the results of traditional parameter 

estimation strategies based on event-by-event and multi-event calibrations. One single 

rainfall-runoff model structure allows representing two groups of different hydrological 

conditions for an urban catchment by means of the variability of the optimal parameters found 

for each rainfall event. Furthermore, the proposed strategy led to identify rainfall events in 

which the rainfall error is likely to be high enough to be considered as unreproducible events, 

at least by the selected CRR model. 

 

A model-based approach is presented in Chapter 5 to correct rainfall errors, demonstrating the 

advantages of a rainfall correction model in which the rainfall is corrected by multiplying 

factors over constant-length time window and rainfall zero records are filled with a reverse 

model. The rainfall events that are identified to be highly rainfall-error influenced in Chapter 

4 are corrected by means of the rainfall error correction model recommended from results in 

Chapter 5. The correction of rainfall events shows to be consistent with the groups of 

hydrological conditions established in Chapter 5, showing a “correction dependency” as a 

function of the hydrological group in which the rainfall correction is undertaken. The 

correction of the rainfall events open further perspectives for water quality modelling, aspect 

that is studied in Part 3, as areal rainfall estimations might be more appropriate to model 

runoff quality than data from a single rain gauge. In Chapter 6, different water quality models 

are tested by including rainfall events with corrected rainfall as input in order establish 

relations between rainfall errors, hydrological conditions with performances of TSS 

stormwater models. Furthermore, Chapter 7 applies the proposed rainfall correction method of 

Chapter 5 as a more general estimator of observed virtual state variables, seeking for evidence 

about the existence of a virtual mass assumed by many of the traditional accumulation/wash-

off models used for TSS stormwater modelling. 
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PART 3 REVISITING CONCEPTUAL 

STORMWATER QUALITY MODELS  
 

During the past 40 years, modelling the dynamics of stormwater Total Suspended Solids 

(TSS) loads at the outlet of urban catchments has been mainly addressed by the idea of 

accumulation/wash-off originally by Sartor et al. (1974). Although this conceptual model 

does not constitute a rigorous physical description of the system, it is usually considered as a 

physically-based model in the sense that its parameters are interpretable from a physical point 

of view (Bonhomme and Petrucci, 2017). The original accumulation/wash-off idea from 

Sartor et al. (1974) establishes that the stormwater TSS load (kg) at the outlet of an urban 

catchment is given by the product of two processes, M(t,u(t),θ) (kg) and W(u(t),θ), (-), 

simultaneously interacting during the rain events as Eq 23:  

load(t) = 𝑀(𝑡, 𝑢(𝑡), θ) ∙ 𝑊(𝑢(𝑡), θ)     Eq 23 

 

where M and W represent respectively the state of available mass of pollutant M (kg) to be 

transported by the wash-off term W (-), u(t) is the input signal (rainfall R or flow rate Q) 

(m
3
/s) and θ are the calibration parameters. In the original formulation of Sartor et al., (1974) 

𝑀 = 𝑀0 𝑒
−𝑎∙ 𝑢(𝑡)𝑟∙ 𝑡 and 𝑊 = 𝑎 ∙ 𝑄(𝑡)𝑟, constituting the model expressed in Eq 24 with a (-) 

and r (-) as the set of calibration parameters.   

𝑙𝑜𝑎𝑑(𝑡) = 𝑀(𝑡) ∙ 𝑊(𝑡) = 𝑀0 ∙  𝑒
−𝑎∙ 𝑄(𝑡)𝑟∙ 𝑡 ∙ 𝑎 ∙ 𝑄(𝑡)𝑟 

Eq 24 

 

For this case, the exponential decaying function M is obtained from a mass conservation 

principle, representing how the initial pollutant mass M(0) = M0 is transported outside of the 

catchment during the event by W, without adding further mass inputs. For Sartor et al. (1974), 

the M0 value was determined by coupling a build-up model that represents the accumulation 

of the pollutant mass as a function of the Antecedent Dry Weather Period ADWP (e.g. Freni 

et al., 2009; Chow et al., 2015). However, the need of this extension can be eliminated when 

M0 is estimated as an additional parameter by direct event-based calibrations (e.g. Kanso et 

al., 2005). The benefits of using build-up in TSS stormwater simulation models have been 

questioned by previous studies (Vaze and Chiew, 2002; Dotto et al., 2011).  

A wide amount of formulations based on Eq 23 can be found in the literature for representing 

the load dynamics during rainfall events, where two main categories of models can be 

distinguished, based on the formulation of M process: 

- Time variable virtual process (TVP): The M process is commonly understood as the 

dynamics of the available mass over the catchment. This approach is usually cited in the 

literature as a mass-limited (ML) description (e.g. Piro and Carbone, 2014), with M following 

a decaying behaviour in time given by an e.g. linear, potential, exponential (e.g. Eq 24) or 

logistic functions (Egodawatta et al., 2007; Crobedu and Bennis, 2011; Imteaz et al., 2014; 

Zhao et al., 2015; Qin et al., 2016), limiting the flow rate production given by W. The 

variations in the description of M are generally aimed to retain a certain analogy with the 

mass conservation principle established in the case of Eq 24 (exponential decay). The set of 

parameters θ might change for different definitions of M (Egodawatta et al., 2007; Freni et al., 

2009; Crobedu and Bennis, 2011), in all cases with M0 as an additional parameter when no 

build-up model is coupled. 
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 - Time constant virtual process (TCP): a second family of studies consider M = M0 for all t 

(constant value), implying that there is no varying state understood as the pollutants mass to 

be potentially washed by W, and therefore M will not be a limiting factor of W to calculate the 

load. The load dynamics will be directly governed by the input u(t) (m
3
/s) in the W term (most 

commonly 𝑊 = 𝑎 ∙ 𝑄(𝑡)𝑟). This approach is cited in the literature as an infinite available 

mass (e.g. Kanso et al., 2005) or flow-limited (FL) description (e.g. Piro and Carbone, 2014). 

When M0 is evaluated by calibration, usually a = 1 for having 𝑊 = 𝑄(𝑡)𝑟 and avoid 

identifiability problems, obtaining the model in Eq 24 with M0 (kg) and r (-) as the total set of 

parameters θ: 

load = 𝑀0 ∙ 𝑢(𝑡)
𝑟   

Eq 25 

 

In this case, this model can be also referred to as the rating curve model RC (Huber et al., 

1988) and is probably the simplest model structure to be found in the literature.  

For larger urban catchments (e.g. over 100 ha), further formulations have been applied by 

explaining the TSS load as a function of different contributions (e.g. loadsurface, loadroads, 

loadparkways, loadsewer) or sub-catchments, aimed to keep a physically-based essence in the 

models (Robien et al., 1997; Hong et al., 2016). These studies have developed approaches 

including more detailed descriptions of the pollutant local processes inside the different 

components of the studied urban system (e.g. surface, roads, parkways, sewer system) (Freni 

et al., 2009; Muleta et al., 2012) or sub-catchments (e.g. Bonhomme and Petrucci, 2017), 

considering for example: (i) separate rainfall R (m
3
/s) and flow rate Q (m

3
/s) contributions as 

different inputs u(t) (m
3
/s) (Mannina et al., 2010; Crobedu and Bennis, 2011; Bonhomme and 

Petrucci, 2017) and (ii) sedimentation/resuspension characteristics of the transported 

pollutants (Cristina and  Sansalone, 2003; Shaw et al., 2009; Mannina et al., 2010; Wijesiri et 

al., 2015). However, these approaches in their current state of development still represent 

important challenges related to parameters identifiability, in the absence of data and 

representative information about the load dynamics inside the system (Benedetti et al., 2013).  

Consequently, probably the most popular choice remains to adopt a “mean” or lumped 

description of the accumulation/wash-off process for the complete urban catchment, even if 

this last one is much larger than the experimental sites used for conceiving these TVP or TCP 

conceptual models (Bonhomme and Petrucci, 2017). Indeed, this lumped approach has been 

implemented in a massive amount of literature, considering the input u(t) as rainfall R (e.g. 

Vaze and Chiew, 2002; McCarthy et al., 2012; Manz et al., 2013) or flow rate Q (e.g. Vaze et 

al., 2003; Kanso et al., 2005), including purposes such as real time control, climate change 

assessment, risk analysis, water management and in multiple commercial softwares (e.g. Freni 

et al., 2009; Rossman, 2010; Muleta et al., 2012). However, the unsatisfactory performance of 

this approach is frequently stated, as well as the difficulty of generalizing its results to real 

world applications, especially as urban catchments are large and complex (e.g. Vaze et al., 

2003; Deletic et al., 2009; Dotto et al., 2011). This can be explained by the non-generalizable 

nature of this accumulation wash-off idea to larger scales, where modelling errors of the TSS 

load are amplified when these lumped descriptions are faced to larger urban catchments (Liu 

et al., 2012). Furthermore, even the existence of a “mean” state of available TSS mass for 

large catchments have been questioned from a low identifiably and a high spatial variability 

of models parameters (Bonhomme and Petrucci, 2017). Accordingly, one can ask under this 

“large urban catchments” context whether a traditional lumped TVP approach might be more 

adaptable than simplified lumped TCP descriptions. Many researchers have claimed the 

necessity of including an M essential process (always interpreted as an available TSS mass) 

by TVP formulations, while many others have found satisfactory results with TCP approaches 
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(RC models) (e.g. Kanso et al.,2005; Obropta and Kardos, 2007). Firstly, it is reasonable to 

argue that many of these discrepancies can be attributed to the following constraints in the 

experimental/methodological settings: (i) non representative controlled laboratory conditions 

or small catchments (ii) limited number of TSS data, (iii) limited number of rainfall events 

and (iv) insufficient assessment of uncertainty in data and model parameters. On the other 

hand, studies adopting alternative TCP formulations rather than the RC model are limited 

(e.g. Bai and Jing, 2012; Zhao et al., 2015). Likewise, the notion of understanding M in TVP 

descriptions as a more general process missed by TCP formulations, which might be 

oversimplified or misinterpreted by the accumulation/wash-off idea, has not been explored 

according to author’s best knowledge. Therefore, the TSS models are revisited under an 

Hypothetico-Inductive Data Based Mechanistic (HI-DBM) framework (Young, 2013), testing 

physically-interpretable Transfer Functions models (TF) jointly with traditional accumulation-

wash-off models (TCP and TVP), applied to the Chassieu catchment with methods presented 

in Chapter 4. 

The single input (rainfall R or flow rate Q) - single output (load) (SISO) HI-DBM model 

application for this work can be summarized in two stages, Chapter 6 and Chapter 7 

respectively (adapted from Young, 1998):  

Model identification TCP (Chapter 6) - different candidate TCP models, including: (i) black-

box linear TF physically-interpretable model structures and (ii) previously known conceptual 

model with similar characteristics (i.e. RC model), are calibrated by means of a Bayesian 

method. One of the calibrated model structures is selected among them based on direct 

comparisons with the other structures by means of a set of statistical criteria over the 

calibration and verification data sets. Any model without a reasonable physical interpretability 

is discarded.  
 

Model improvement TVP (Chapter 7) - the initial model structure selected in previous stage 

(Chapter 6) is sought to be improved if the results are still unsatisfactory in terms of 

performance or physical interpretation. For this purpose, statistical evidence of Time Variable 

virtual Processes TVP (or parameters as referred to in e.g. Young and Garnier, 2006) is 

sought in this initial model structure and a TVP(s) reconstruction(s) (e.g. fixed interval 

smoothing method for TF, see Young (1998), Bayesian methods, Reverse Modelling) can be 

undertaken. This reconstruction estimates how a parameter, interpreted as a virtual process, of 

a given model structure might change in time in order to bring the observed and simulated 

outputs as close as possible (see e.g. Young and Garnier, 2006). From statistical and physical 

interpretations of the TVP(s) reconstruction(s), one can replace the originally time constant 

parameter(s) in the TCP model structure by a finite parametric function that matches the 

assessed TVP(s) dynamics, constructing an improved TVP version of the initial TCP model. 

The parameters of the resulting model for TVP can be estimated by numerical optimization 

methods. The introduced finite parametrized function into the TCP model structure, or the 

TVP dynamics, should also have a physical meaning to be accepted, e.g. as a decaying M 

available TSS mass to be washed off. These TVP reformulated models structures are useful to 

describe potential missing process in the initial TCP model structure. 
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CHAPTER 6. REVISITING TIME CONSTANT VIRTUAL MASS MODELS 

WITH TRANSFER FUNCTIONS AND RATING CURVES 

 

6.1 INTRODUCTION AND BACKGROUND 

 

The TCP model structures are characterized by the simplification of not including an 

independent M process. Therefore, the TSS load dynamics is mainly governed by W and 

consequently the TSS load is produced as a monotonic function of the input dynamic u(t) 

(m
3
/s), without the influence of a potential limiting factor M. Revisiting further TCP 

descriptions might bring evidence to question the necessity of applying a more complex 

model from the TVP family than a simplified TCP approach, if satisfactory enough 

performances are obtained by TCP. Although there has been an increasing interest during 

recent years in Transfer Functions TF models into the environmental context (e.g. Jakeman et 

al., 1990; Young 2003 and the prior references therein), implementations for water quality 

modelling are less frequent (e.g. Davis and Atkinson, 2000; Young and Garnier, 2006). 

Therefore, TFs emerge as a promising research direction towards alternative TCPs 

description, in the sense that all of them are monotonic functions of the input dynamic u(t) 

(m
3
/s) and no virtual state variables are introduced in the calculation. 

One immediate difference between TFs and RC is that the second has a well-known physical 

meaning, linking shear stress produced by flow rate to TSS resuspension and transfer 

(Crobedu and Bennis, 2011). On the other hand, TFs models are in principle black-box 

descriptions. However, system identification and control enhance their potential to be 

interpreted as serial, parallel and feedback connections of sub-systems that often have a 

physical meaning (Young and Garnier, 2006).  

Therefore, further TCP descriptions are explored by visiting different TFs in the first stage of 

the proposed HI-DBM application, which are compared to the traditional RC model structure. 

Parameter identification and uncertainties are assessed for TFs and RC by the use of the 

Bayesian calibration approach proposed in Chapter 4, given the restriction of further methods 

such as the Simplified Refined Instrumental Variable method for TFs due to uncertainty-free 

input/output hypotheses (adapted from Pedregal et al., 2007). A statistical analysis in order to 

recommend a model structure is undertaken based on tests in the preliminary analysis of the 

HI-DBM frame (AIC, BIC and YIC) (Young, 2013), together with further analysis and 

performances for verification data (NS, AIC, POCmod) (from Chapter 4). The differences of 

the results by using flow rate at the outlet of the catchment Q, the rainfall R or the corrected 

rainfall Rcorr (from Chapter 5) as inputs u(t) (m
3
/s) are also discussed.  
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6.2 METHODOLOGY 

TCP model structures: Transfer Functions (TFs) and Rating Curve (RC) 
 

A single-input single-output (SISO) TF can be expressed by the following equations: 

{
     𝑥(𝑡) =  

𝐵(𝑠)

𝐴(𝑠)
𝑢(𝑡 − 𝜏)

𝑙𝑜𝑎𝑑(𝑡) = 𝑥(𝑡) + 𝑒(𝑡)

 Eq 26 

where: 

𝐴(𝑠) =  𝑠𝑛 + 𝑎1𝑠
𝑛−1 +⋯+ 𝑎𝑛−1𝑠 + 𝑎𝑛  

𝐵(𝑠) =  𝑏0𝑠
𝑚 + 𝑏1𝑠

𝑚−1 +⋯+ 𝑏𝑚−1𝑠 + 𝑏𝑚  
Eq 27 

 

A(s) and B(s) are polynomials with the derivative operator s = d/dt and τ (min) is a pure time 

delay. In Eq 26 and Eq 27, u(t) is the input signal, x(t) is the noise free output signal and 

load(t) is the noisy output signal. The component e(t) is considered i.i.d., however this 

assumption is not restrictive for the TF application (Young, 1998). A TF is a compact 

representation of a differential equation. Therefore, the physical interpretability of Eq 26 can 

be directly related to the following differential equation form Eq 28 (Garnier and Young, 

2006):  

 

𝑑𝑛𝑙𝑜𝑎𝑑(𝑡)

𝑑𝑡𝑛
+ 𝑎1

𝑑𝑛−1𝑙𝑜𝑎𝑑(𝑡)

𝑑𝑡𝑛−1
+ ⋯+ 𝑎𝑛𝑦(𝑡) =  𝑏0

𝑑𝑚𝑢(𝑡 − 𝜏)

𝑑𝑡𝑚
+ ⋯+ 𝑏𝑚𝑢(𝑡 − 𝜏) + 𝐴(𝑠) ∙ 𝑒(𝑡) 

 

Eq 28 

A given model structure for this type of models is defined from the pair (n poles, m zeros) 

TFn, m. The number of parameters for the set θ is equal to n + (m + 1), where the set θ = [a1, .., 

an, b0, …, bn]. For RC in Eq 25 the set of parameters θ = [M0, r]. Seven different model 

structures are tested in this Chapter, including TF0,0 TF1,1 TF2,1 TF2,2TF3,2 TF3,3 and RC. For Q 

as input u(t) the delay τ = 0 and the number of parameters is: 1, 3, 4, 5, 6, 7 and 2, 

respectively. For rainfall R or Rcorr as the input u(t), τ is added as another parameter for all 

model structures. One difference between TFs and RC is their linear and non-linear nature, 

regardless the number of parameters. On the other hand, TFs led to include information from 

previous time-steps (measured Q and/or simulated TSS load) in the calculation, contrary to 

the RC in which the calculation of load(t) only depends on u(t - τ). Implications of these 

differences are further discussed in the results and discussion section.  

 

Parameter identification 
 

Although there is a wide range of calibration methods in the literature for TF, most of them 

are based on hypotheses related to normality and data input free-error (Pedregal et al., 2007). 

For being consistent with the development of this work, the identification of the set of 

parameters for a TF or RC is preferred to be undertaken by a Bayesian approach (Vrugt et al., 

2016), under event-based calibrations, as proposed in Chapter 4. For a given calibration 

rainfall event i (i = 1 : 255), θi is the local set of parameters of a given model structure and 

p(θ/load)i  their probability density function (pdf), given an input u(t)obs i (Q, R or Rcorr) and an 

output load(t)i. The Bayesian approach leads to calculate local p(θ/load)i, named posterior 

distribution, over the basis of a likelihood function and a prior knowledge of the distribution 

of parameters p(θ), which is expressed by Eq 29: 
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𝑝(θ 𝑙𝑜𝑎𝑑⁄ )𝑖 = 𝐶∏
1

√2𝜋�̂�𝑡
2
𝑒𝑥𝑝 [−

1

2

(𝑟𝑒𝑠(𝑡)𝑖)

�̂�𝑡
2

2

]  

𝑛

𝑡=1

∙ 𝑃(θ) 

 

Eq 29 

 

𝑟𝑒𝑠(𝑡)𝑖 = (𝑙𝑜𝑎𝑑𝑠𝑖𝑚 (𝑡, θ)𝑖 − 𝑙𝑜𝑎𝑑𝑜𝑏𝑠 (𝑡)𝑖) Eq 30 

 

where n is the number of input data in u(t)obs i, loadsim(t, θ)i is the simulated load by a given 

TF or RC model at a given time step t and a set of parameters θi, p(θ) is a uniform probability 

distribution for each parameter (informative-less), C is a normalization coefficient (irrelevant 

for the implementation of numerical algorithms to solve Eq 29, see Vrugt et al., 2016), res(t)i 

are the residuals of the model in Eq 30, and �̂�𝑡
2 is the residual variance, considered for this 

application to be equal to the squared value of loadobs(t)i standard uncertainty for each time-

step t. The DREAM algorithm is used for determining p(θ/load)i as a solution to Eq 29. The 

local set of parameters that represents the optimal parameters values among all probable 

values of p(θ/load)i is called θopt i.  

The global estimation of p(θ/load) is calculated as the marginal distribution of representative 

local estimations of p(θ/load)i, θopt i estimations with Nash-Sutcliffe efficiency coefficient 

(NS) < 0.8 are discarded as unrepresentative, and θopt = mean(p(θ/load)). However, this 

marginal p(θ/load) is encouraged to be treated as a conditional probability function, by means 

of the SE Conditional strategy (SEConditional), given the potential benefits presented in 

Chapter 4 for this approach. The objective of SEConditional is to divide the marginal 

distribution p(θ/load) into Tnum_c conditional probability functions p(θ/load, Tnum_c) and 

θopt Tnum_c = mean(p(θ/load, Tnum_c). The idea behind this division is to improve the accuracy 

and diminish the uncertainties in the simulations for the verification stage (see details in 

Chapter 4). However, its applicability depends on the possibility of linking a verification 

event to a given Tnum_c group by means of characteristics of the input signal u(t)obs (e.g. 

max., min., mean, volume, duration, ADWP), in order to establish which p(θ/load, Tnum_c) 

conditional function should be utilized for simulating the TSS load. Hence, the marginal 

p(θ/load) function can only be represented by num_c conditional functions p(θ/load, Tnum_c) 

if a clear association between characteristics of this input u(t)obs and a given conditional 

Tnum_c function can be established. Otherwise, the marginal estimations p(θ/load) and θopt 

are recommended to be retained. 

 

Model identification 
 

A methodology for identifying the most suitable model structure in the TCP models family is 

developed based on the HI-DBM framework (Young, 2013), including the proposed 

parameter identification method. The candidate model structures j = 1: num_str are the 

traditional RC (2 parameters) and the following TFs (n poles, m zeros): [0,0], [1,1], [2,1], 

[2,2], [3,2], [3,3], (1, 3, 4, 5, 6, 7 parameters) for a total of model structures num_str = 7. The 

methodology is explained by the following Figure 37: 
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Figure 37. Model selection diagram: a) selection of an u(t) input (Q, R, Rcorr) b) proposed model structures, c) 

parameters identification for a given model structure (calibration) and evaluation of AIC, BIC, YICmod and NS 

for each calibration event, d) p(θ/load) marginal or conditional representation, e) verification with p(θ/load) 

calculating NS, ARILpar, ARILtot, POCmod par, POCmod tot for each verification rainfall event, f) selection of 

a model structure from b). 

The first step consists in selecting an input u(t)obs between Q, R or Rcorr (Figure 37a). 

Afterwards, a model structure from j = 1 : num_str  is selected to be evaluated (Figure 37b), 

undertaking a preliminary analysis from three statistical criteria with the calibration dataset: 

the AICj (Akaike Information Criterion) (Akaike, 1974), the BICj (Bayesian Information 

Criterion) (Schwarz, 1978), a modified version of the YICj (Young Information Criterion) 

(Young, 1998), to be called YICmodj and NSj (Nash-Sutcliffe efficiency coefficient). 

However, these I indicators Ii,j (I for generality) are different for each rainfall event, given the 

inter-event variability. Accordingly, the AICi,,j, BICi,,j, YICmodi,j and NSi,,j are directly 

calculated from each event from local p(θ/load)i and θopt i  estimation (i =1 : 255 for the study 

case) to be further compared (Figure 37c). These comparisons of Ii,j lead to establish if the 

no yes 

Selection of p(θ/load)  

 

a)   Input u(t)obs: Q or R or Rcorr 

b)    Model structures j =1 : num_str (7)  

TF0,0 TF1,1 TF2,1 TF2,2TF3,2 TF3,3 and RC 

c)     Parameter identification i = 1 : number of events (255)  

 

For each i event calculate: p(θ/Y)i and θopt i (Eq 29) 

Preliminary indicators: 

 - AICi,j BICi,j and YICmodi,j and NSi,j 

 

e)  Verification (for i = 256 : 365 events) with further indicators: 

NS
 
i,j , ARILpar i,j, ARILtot i,j, POCmod pari,j POCmod toti,j 

 

f)  Select a j model structure to represent load from verification 

(based on performance and physical interpretation) 

 

d)   Can the marginal p(θ/Y) be represented by num_c > 1 conditional 

functions? 

Selection of p(θ/load, Tnum_c)  
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proposed model structures are feasible solutions and finding initial evidence about a probable 

best structure based on statistical criteria, to be confirmed by the verification data (Figure 37d 

and Figure 37e). It is worth clarification that the methodology presented in Figure 37 can be 

applied to any dataset when it is desired to select a single model structure, considering the 

inter-event variability of the optimal sets of parameters. 

A brief description of these indicators I for calibration is given in the following lines.   

The AIC, BIC and YICmod are aimed to bring a basis for selecting a particular model 

structure from a group of models, by selecting the model structure that reports the minimum 

value among the other model structures to which it is compared. One should bear in mind that 

each statistics has a specific objective and was developed under different theoretical basis.  

The objective of AIC model selection is to estimate the information loss when the probability 

distribution f associated with the true model is approximated by the probability distribution g, 

associated with the model that is to be evaluated. A measure for the discrepancy between the 

true model and the approximating model is given by the Kullback–Leibler (1951) information 

quantity Information (f, g) (see Burnham and Anderson, 2002). The AIC can be calculated as 

follows by Eq 31:  

𝐴𝐼𝐶 = 𝑛 ∙ ln {∑𝑟𝑒𝑠(𝑡)2
𝑛

𝑡=1

} − 2𝑛𝑃 

 

  Eq 31 

 

where n is the number of data in the residuals res(t) and np is the number of parameters. One 

hypothesis on which the mathematical strength of the AIC indicator depends is the white 

noise behavior of the residuals in Eq 30 (Young, 1998). However, several statistical methods 

based on this i.i.d. residuals assumption are still widely applied in urban drainage modelling 

despite residuals do not follow this condition. Furthermore, the introduction of mathematical 

transformation for accomplishing normality of residuals has shown to decrease the predictive 

ability of the models (e.g. Dotto et al., 2013). On the other hand, a robust aspect of this 

indicator is the implicit assumption that the “true” model is unknown, at least for the 

candidate set of models that are tested, which is usually the case in practical applications 

(Young, 1998; Young, 2012).  

A second indicator included in the HI-DBM framework is the BIC (Young, 1998). The BIC 

has being also proclaimed to be less prone to over-fitted models than the AIC (Young, 2012). 

On the other hand, the BIC indicator is based on the hypothesis that the true model is one of 

the candidate models, which is in principle problematic under a practical point of view, as 

none of the proposed models constitute a the true model, given their nature of conceptual 

approximations (Burnham and Anderson, 2002). BIC is defined as Eq 32: 

𝐵𝐼𝐶 = 𝑛𝑃 ∙ ln {𝑛} − 2ln {∑𝑟𝑒𝑠(𝑡)2
𝑛

𝑡=1

} 

 

Eq 32 

 
 

A favored model by the BIC minimizes the BIC value. According to Eq 32, the BIC also 

rewards model goodness-of-fit with maximized likelihood and penalizes lack of model 

parsimony. An extensive comparison between AIC and BIC can be found in e.g. Aho et al. 

(2014), and further references recommend to include both indicators in any model 

identification diagnosis (e.g. Yang, 2005). 

The YIC (Young, 1989) is a heuristic indicator based on intuition, as it is not a formal 

statistical approach. The YIC in its classical form is a function of the standard deviations σθ of 
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the parameters of the set θ. However, the Bayesian approach proposed Eq 29 allows to deliver 

a detailed description of p(θ/load), which might be neither normal nor symmetric and 

therefore cannot be summarized by a mean and a standard deviation, impeding the direct 

application of YIC proposed by Young, (1989). The uncertainty of p(θ/load) can be 

characterized by means of a non-parametric measurement of dispersion aimed to represent 

e.g. 95 % of the coverage interval of the random variable. Therefore, a modification of the 

original YIC to be called YICmod is proposed for this Chapter, modifying the standard 

deviation of parameters estimations σθ in the original YIC indicator by a non-parametric 

estimation of dispersion. Accordingly, the YICmod is calculated as follows by Eq 33: 

𝑌𝐼𝐶𝑚𝑜𝑑 = ln {
∑ 𝑟𝑒𝑠(𝑡)2𝑛
𝑡=1

𝜎𝑙𝑜𝑎𝑑
2 } − ln { 

1

𝑛𝑝
∑

𝑝(𝜃(𝑘)/𝑙𝑜𝑎𝑑)97.5 − 𝑝(𝜃(𝑘)/𝑙𝑜𝑎𝑑)2.5
𝜃(𝑘)𝑜𝑝𝑡

𝑛𝑝

𝑘=1

} 

 

Eq 33 

where p(θ(k)/load)97.5 and p(θ(k)/load)2.5 are the 97.5 % and 2.5 % limits of the p(θ(k)/load) 

distribution, for a 95 % coverage of the parameter θ(k) from the set θ. The 𝜎𝑙𝑜𝑎𝑑
2 is the standard 

deviation of the load pollutograph. Indeed, the calculation of YICmod is directly linked to the 

parametric uncertainties and the first term is simply a relative, logarithmic measure of how 

well the model explains the data: the smaller the model residuals the more negative the term 

becomes. The second term in Eq 33, on the other hand, provides a logarithmic measure of the 

uncertainty in parameters. If the model is over-parameterized, then it can be shown that the 

covariance matrix of parameters will increase in value, often by several orders of magnitude 

(e.g. Young et al., 1998). When this is the case, the second term in the YICmod tends to 

dominate the criterion function, indicating over-parameterization. The YICmod indicator is 

commonly a large negative value (due to the logarithmic term), but the choice is not critical 

provided the associated NS is relatively high compared with that of other models (adapterd 

from Young et al., 1998).  

However, neither the AIC, BIC nor YICmod are aimed to bring direct information about the 

quality of the estimation from the model, as these indicators are exclusively designed for 

comparative purposes in a set of model structures (Figure 37c). Hence, the HI-DBM 

framework proposes to complement the analysis in calibration with the classical coefficient of 

determination R
2
 (Nash-Sutcliffe efficiency coefficient - NS - in the hydrological context). 

The NS assesses the portion of the total variance of the output load data 𝜎𝑙𝑜𝑎𝑑
2  able to be 

explained by a given model structure. This indicator can be calculated as follows Eq 34: 

𝑅2 = 𝑁𝑆 = 1 − 
∑ 𝑟𝑒𝑠(𝑡)2𝑛
𝑡=1

𝜎𝑙𝑜𝑎𝑑
2  Eq 34 

The NS is not recommended to be used as a unique model selection criterion with calibration 

data, given its sensitivity to over parametrization (Young, 1998). The NS indicator in 

calibration is mainly aimed to complement AIC, BIC nor YICmod results, in terms of 

verifying that the proposed models structures have acceptable performances (e.g. NS > 0.6).   

The HI-DBM recognizes this preliminary analysis by means of the calibration data as a 

powerful inference tool to scrutinize and discard inappropriate models from a preliminary 

stage, and even to deliver strong conclusions about model performance whenever verification 

is not possible. However, inferences obtained from the verification stage (Figure 37e) offer 

without doubt more generality in the sense of transferability and robustness, as presented in 

Chapter 4. The performance of the models is then assessed by means of p(θ/load) and θopt  (or 

p(θ/load, Tnum_c) and θopt Tnum_c if a conditional division is conceivable, Figure 37d) for the 
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remaining i = 256 : 365 verification events, including the following indicators Ii,j : the size of 

uncertainty intervals of load predictions (precision) (ARIL, Vezzaro and Mikkelsen, 2012), 

the number of measurements inside the uncertainty intervals (reliability) (POCmod, from 

Chapter 4 and Ye et al., 2014) and the mean prediction for the verification events (accuracy) 

(NS) as for the verification dataset in Chapter 4 (Figure 37e). The ARIL and POCmod can be 

calculated by the following Eq 35, Eq 36 and Eq 37: 

𝐴𝑅𝐼𝐿 =  
1

𝑛
∑ 

𝐿𝑖𝑚𝑖𝑡𝑠𝑢𝑝,𝑡 − 𝐿𝑖𝑚𝑖𝑡𝑖𝑛𝑓,𝑡

𝑙𝑜𝑎𝑑𝑠𝑖𝑚 (𝑡, θ𝑜𝑝𝑡)

𝑛

𝑡=1

 
 

Eq 35 

𝐶𝑡 = {
1 𝑙𝑜𝑎𝑑𝑜𝑏𝑠(𝑡) − 2�̂�𝑡  ≤  𝐿𝑖𝑚𝑖𝑡𝑠𝑢𝑝,𝑡  𝑎𝑛𝑑 𝑙𝑜𝑎𝑑𝑜𝑏𝑠(𝑡) + 2�̂�𝑡  ≥  𝐿𝑖𝑚𝑖𝑡𝑖𝑛𝑓,𝑡  

0                                                                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Eq 36 

𝑃𝑂𝐶𝑚𝑜𝑑 = 
1

𝑛
∑ 𝐶𝑡

𝑛

𝑡=1

 
 

Eq 37 

where n is the number of input u(t) data, loadobs. loadsim(t, θ)  is the simulated load by the 

model at time step t from the observed rainfall u(t)obs and global optimal parameters θopt. 

𝐿𝑖𝑚𝑖𝑡𝑠𝑢𝑝,𝑡 and 𝐿𝑖𝑚𝑖𝑡𝑖𝑛𝑓,𝑡 are the upper and lower limits for a confidence interval of 95 % at 

time step t, obtained from p(θ/load).  

The total simulated output uncertainty in reality will not be completely captured by parametric 

uncertainties. This phenomenon can be attributed to remnant errors in calibration that are not 

accounted for the input and structural error assumptions (Thyer et al., 2009). Therefore, the 

parametric uncertainties given by p(θ/load) can be propagated to estimate the total simulation 

output uncertainty. For comparative purposes, the total simulation output uncertainty is 

estimated by following the method proposed by Dotto et al. (2011). The residuals obtained 

from the rainfall events used in calibration are binned as a function of modelled loads. This 

allows constructing probability distributions of residuals as a function of the modelled load 

values. For a verification event, as the modelled load value at t are a function of a set of 

parameters, a different probability distribution of residuals is obtained by considering each 

realization of p(θ/load) (or p(θ/load, Tnum_c)). The total uncertainty of simulated load at t 

will be then given by the ensemble of all the probability distributions of residuals obtained at 

t, as a result of propagating the parametric uncertainties (see further details in Dotto et al., 

2011). Therefore, two complementary indicators, to be called ARILtot and POCmod tot, are 

calculated for the estimated total output uncertainty simulations in the 110 verification events. 

However, delivering a conclusion about a best j model structure, based on the data set from 

events i = 1 : 255 (calibration) or i = 256 : 365 (verification) and the corresponding Ii,j 

estimation represents additional challenges. Indeed, the model selection problem is an active 

field of research by itself (e.g. Murtaugh, 2014) and is commonly addressed from 

comparisons of the I scores obtained by the candidate model structures (i.e. AIC, BIC and 

YICmod for calibration or NSval, ARILpar, ARILtot, POCmod par and POCmod tot in 

verification) (Figure 37f). However, this selection is not direct, given the inter-event 

variability either for calibration or verification, for which the best j model structure might be 

different from one event to another. For the context of this work, this aspect is analyzed by 

comparing the indicators I:,j under two perspectives: 
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- Approach of selection 1 (S1): the model selection is undertaken based on the idea of 

evaluating if the inter-event mean of a given indicator mean(I:, j) calculated for a model 

structure j is significantly higher (or lower) than the inter-event mean for the other model 

structures I:, ≠j. By using an ANOVA or Kruskal-Wallis statistical test, the group I:,j is 

compared to all of the remaining groups formed by each structure I:, ≠j (the number of samples 

for each group is equal to the number of events), evaluating the null hypotheses that the 

mean(I:,1) = mean(I:,2) = mean( I:,3)  = ... = mean(I:, j) = …= mean(I:, num_struc) versus the alternative 

hypothesis that these means are not equal. Whenever the ANOVA or Kruskal-Wallis test 

reports a p-value < 0.05 between two groups, one can conclude that there is enough statistical 

evidence to state that the mean(I:,1) is higher (or lower) than the mean(I:,2). The selection of a 

more adaptable test between the ANOVA (normality) and Kruskal-Wallis (non-parametric) is 

dependent on the normality of the groups I:, j to be compared (tested by the Shapiro Wilk test 

for each I:, j group separately). The ANOVA test is preferred instead of the Kruskal-Wallis 

test only if there is enough statistical evidence that all the j = 1: num_str groups are normally 

distributed (Shapiro Wilk test with p-values j > 0.05 for all j = 1: num_str groups) (Figure 38).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Application of the S1 approach for model selection. 

- Approach of selection 2 (S2): the model selection is undertaken based on the number of 

victories (i.e. number of i events in which Ii,,j  > Ii,≠j) lower (or higher) than the number of 

victories that might be obtained by chance (binomial distribution), giving a significance level 

of 95 %. An intermediate aspect should be addressed under this perspective, in which one 

needs to define when the value of Ii, j is significantly higher or lower than for the others 

structures Ii, ≠j, to declare it as the winner j structure for a given rainfall event i. For this 

purpose, a Bayesian likelihood approach is adopted, inspired from the Alkaline weights for 

the AIC (Aho et al., 2014), in which the values of an indicator Ii,j are weighted by using all 

the values obtained for the analyzed structures Ii, :, in order to represent the probability that Ii ,j 

is the best model for a given i rainfall event. The probability p(Ii,,j  > Ii,≠j) can be expressed as 

follows:  

yes 

ANOVA test for the null 

hypothesis: mean( I:,1) = 

mean(I:,2) = mean( I:,3)  = ... = 

mean(I:, j) = …= mean(I:, 

num_struc) 

 

Kruskal-Wallis test for the null 

hypothesis: median( I:,1) = 

median(I:,2) = median( I:,3)  = ... = 

median(I:, j) = …= median(I:, 

num_struc) 

The Shapiro Wilk test p-value j of any I:, j = 1: num_str groups is > 0.05 ? 

no 

S1 model structure selection results based on p-values from 

the ANOVA or Kruskal-Wallis test  
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𝑝(𝐼𝑖,𝑗 > 𝐼𝑖,≠𝑗) =

exp (−
∆𝐼𝑖,𝑗

2
⁄ )

∑ exp (−
∆𝐼𝑟

2⁄ )𝑛
𝑟=1

     Eq 38 

where: 

∆𝐼𝑖,𝑗 = |𝐼𝑖,𝑗 − 𝐼𝑖,𝑜𝑝𝑡|        Eq 39 

 

and 

𝐼𝑖,𝑜𝑝𝑡 = {
𝑚𝑎𝑥𝑗=1

𝑛𝑢𝑚_𝑠𝑡𝑟𝑢𝑐(𝐼𝑖,𝑗)        𝑖𝑓 𝐼 𝑖𝑠 𝑁𝑆𝑣𝑎𝑙 , 𝑃𝑂𝐶𝑚𝑜𝑑

min𝑗=1
𝑛𝑢𝑚_𝑠𝑡𝑟𝑢𝑐(𝐼𝑖,𝑗)       𝑖𝑓 𝐼 𝑖𝑠 𝐴𝐼𝐶, 𝑌𝐼𝐶, 𝐴𝑅𝐼𝐿

 
  Eq 40 

 
 

 

One should bear in mind that this weighting approach is originally proposed for the case I = 

AIC, which is based on a formal frame, contrary to the case of BIC, or YICmod. However, the 

simplicity of the approach proposed by Eq 38 is appealing for establishing a semi-formal 

hypothesis test in which an indicator Ii,,j  > Ii,≠j is declared as the winner for a given rainfall 

event i if p(Ii,,j  > Ii,≠j) > 0.95 (Eq 38), for a significance level of 95 %. Indeed, this method 

can be only considered as a formal statistical test for the case of I = AIC, evaluating the null 

hypothesis that ∆AICi,j > 0, based on the premise that the ∆AICi,j statistics follows a chi-

squared X2 distribution. Accordingly, an analytical expression for calculating the p-value can 

be obtained (Aho et al., 2014). However, this approach is valid exclusively for cases of 

normally distributed residuals and nested models, which is also problematic for the case study 

as RC is not nested with TFs and an analogue equation for BIC, YIC or YICmod is not direct. 

For the case of NS, testing for statistical significance of the victory of an event i can be done 

by verifying the null hypothesis of ∆NSi > 0 by a t-test (or Wilcoxon), depending on the 

normality of ∆NSi , which for our case is unknown (adapted from Fay et al., 2010). However, 

the test proposed in Eq 38 is retained in regards of keeping a unique decision criterion for 

identifying the winner model structure for each rainfall event i. With this information one can 

establish if the number of victories (events) in which p(I:,,j  >I:,≠j) > 0.95 for a given model 

structure j is high enough to proclaim it as significantly greater than the number of victories 

attributable to randomness. For a binomial distribution, this value will be of 48 victories for 

calibration (255 events) and 23 for verification (110 events) for a 95 % significance level, 

given the probability of winning by chance for a given structure in an event is 1/num_struc = 

1/7. Therefore, the model structure j can be considered to have a significant number of 

victories if the (number victories j)/(number of calibration events) is greater than 48 

(calibration) or 23 (verification); for any indicator I.   
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6.3 RESULTS AND DISCUSSION 

 

Model identification-calibration 

 

The methodology presented in Figure 37 is applied by testing different inputs u(t): Q, R and 

Rcorr. Considering the large amount of information from these results, the findings presented 

in this section are focused on the flow rate Q as the input u(t). The results for the R and Rcorr 

inputs are similar, and therefore they are further described for the discussion of the results at 

the end of the section. The preliminary analysis in Figure 37c is applied for the calibration 

dataset (255 events) by undertaking individual calibrations for each i rainfall event, delivering 

an estimation of p(θ/load)i and θopt i for  i = 1 : 255  for each model structure j = 1: num_str, 

leading to estimate AICi,j, BICi,j, YICmodi,j and NSi,j (Figure 37 and Figure 39).  

a) b) 

  
c) d) 

  
 

 

 

Figure 39. AICi,j, b) BICi,j, c) YICmodi,j and d) NSi,j, for  each  i = 1 : 255 calibration event and model structures  

j = 1: num_str 

From a visual exploration of the Ii,j values, the AIC :,7  and YICmod :,7 groups seem to be lower 

than the others (Figure 39a, c). However, this result should be confirmed by statistical 

analyses (S1 and S2 approaches). The NSi,j values
 
for the studied TFs are in average NS > 0.8, 

reporting lower values for the RC model (Figure 39d). 

j j 

j j 
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Nevertheless, the mean value of NS > 0.6 for RC can be considered as acceptable in 

calibration, especially considering that this model structure has only two parameters. 

However, in order to verify from a more formal approach if any of the j= 1: num_str model 

structures is significantly more performant in calibration, in terms of Ii,j, the S1 and S2 

approaches are undertaken under the calibration context. The NS in calibration is considered 

as a complementary indicator, in order to verify that the proposed model structures are 

appropriate candidates. The NS is not included for being analysed under the S1 and S2 

approaches with calibration data, as a significantly higher NS value does not imply that a 

model is a more appropriate selection than another, as NS high values can be a result of over-

parametrization.   

 
 

Approach S1 for calibration: AIC, BIC and YICmod. 
 

The first step for S1 is to verify the normality of the I:,j  (j = 1 : num_str) groups, in order to 

define the most appropriate statistical test to look for significant differences between 

mean(I:,1) = mean(I:,2) = mean( I:,3)  = ... = mean(I:, j) = …= mean(I:, num_struc) (ANOVA or Kruskal-

Wallis test). The results of the Shapiro-Wilk test for this purpose with calibration rainfall 

events i =1 : 255 are presented in Table 7. 

 

 
Table 7. p-values of Shapiro-Wilk test for groups AIC:,j, BIC:,j and YICmod:,j from calibration events in model 

structures j = 1: num_str (p-value >0.05, hypothesis of normality accepted at a significance level of 95 %, values 

in light gray). 

 

 

MODEL STRUCTURE 

 

 
(1-1) (2-1) (2-2) (3-1) (3-2) (3-3) RC 

IN
D

IC
A

T
O

R
S

 

AIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

BIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

YICmod 0.46 0.85 0.40 0.38 0.79 0.04 0.00 

 

 

 

The hypothesis of normality is rejected at a significance level of 95 % (Shapiro-Wilk test p-

value < 0.05) for at least one of the model structures I:,j=1:num_str in all the three indicators AIC, 

BIC and YICmod (Table 7). Therefore, the Kruskal-Wallis test is applied for verifying the 

null hypotheses: mean(I:,i) = mean(I:,j), for i and j = 1:num_str (Table 7). shows the p-values 

obtained from the Kruskal-Wallis test for each comparison of mean(I:,i) = mean(I:,j), where 

the p-value < 0.05 are shown in black, meaning that mean(I:,i) ≠ mean(I:,j), for a 95 % 

significance level.   
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a) b) 

  

c)  

 

 

Figure 40. p-values of Kruskal-wallis test for comparisons of groups mean(I:,i) = mean(I:,j), for all j = 1:num_str 

in calibration, with I: a) AIC:,j, b) BIC:,j and c) YICmod:,j (p-value < 0.05 hypothesis of equal means rejected at a 

significance level of 95 %, comparisons in black). 

Kruskal-Wallis test reported strong enough statistical evidence (p-value < 0.05) that the AIC 

and YICmod indicators for the RC model are significantly lower than for all the other TF 

model structures with the calibration dataset (black rows and columns in Figure 40a, c). This 

finding strengths the complementariness of the proposed indicators (AIC, BIC and YICmod), 

as e.g. analyses are not conclusive regarding the BIC (Figure 40b). One can conclude from 

this S1 approach in the calibration stage that RC is a promising model structure, which offers 

a suitable balance between performance (mean NS > 0.6 in Figure 39d) and the number of 

parameters and their parametric uncertainties (AIC and YICmod). No particular conclusions 

can be drawn from the results among the different TFs.  

   

Approach S2 for calibration: AIC, BIC and YICmod. 

 

 

S2 is proposed as an alternative approach to S1 aimed to generalize the model selection based 

on an indicator I given the inter-event variability. For the calibration events, the following 

results are obtained regarding AIC, BIC and YICmod indicators (Figure 41).  

 

 

j j 

j 
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a) b) 

 
 

c)  

 

 

 

Figure 41. number of victories for model structure and group I:,i a) AICi,j, b) BICi,j and c) YICmodi,j for i = 1 : 

255 calibration events and the model structures j = 1 : num_str with 48 victories as the threshold for a 

significance level of 95 % 

The S2 analysis confirmed the promising results obtained for the RC model structure by the 

S1 approach for the calibration dataset. This model is found to be the winner more times (220) 

than what can be attributed to randomness regarding the AIC and YICmod indicators (48 

victories, for a significance level of 95 %, see Eq 38). Therefore, from calibration analyses, 

the RC model can be a reasonable recommendation in case that verification tests are not 

available. The verification is undertaken with the i = 256 : 365 events in further analyses.  

 

Model identification- verification 

For any of the j = 1 : num_str model structures, the marginal p(θ/load) function could not be 

represented by num_c > 1 conditional functions p(θ/load, Tnum_c), as no clear association 

between characteristics of inputs u(t)obs (e.g. max., min., mean, volume, duration, ADWP) and 

the different p(θ/load, Tnum_c) functions could be established (methodology from Chapter 4). 

Therefore, the global estimation of p(θ/load) is proposed to be calculated as the marginal 

distribution sum of representative local estimations of p(θ/load)i  (θopt i estimations with NS < 

0.8 are discarded as unrepresentative) and θopt = mean(p(θ/load)) for all models structures 

(Figure 37d). 

 

j j 

j 
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For the case of verification, different indicators I are proposed than for the calibration stage. 

As the NS is not susceptible to over-parametrization with verification data, it is included as 

another comparative indicator I, jointly with parametric and total ARIL and POCmod, i.e. 

ARILtoti,j, POCmod toti,j, ARILpari,j, POCmod pari,j, and NSi,j, (calculations in Figure 42).  

 

a) b) 

  

 

c) 

 

d) 

  
 

 

e) 

 

 

 

 

Figure 42. a) ARILpari,j, b) POCmod pari,j, c) ARILtoti,j, d) POCmod toti,j and e) NSi,j, for  each  i = 256 : 365 

verification event and model structure j = 1: num_str 

 

From a visual exploration of the Ii,j values, the ARILpar:,7 and ARILtot:,7 (RC model) groups 

seem to be lower than for the other model structures (Figure 42a, c). The POCmod par and 

POCmod tot are nearly one in all cases (Figure 42b, d), given the size of the ARIL values. The 

j j 

j j 

j 
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NSi,: (for all model structures) values
 
are in average about 0.6, which might be considered as 

still unsatisfactory for the verification stage. However, in order to evaluate if any of the model 

structures is performing significantly better, the S1 and S2 approaches are undertaken with 

verification events. 

 

 

Approach S1 for verification: ARILpar, POCmod par, ARILtot, POCtot and NS. 

 

 

Results of the Shapiro-Wilk test with verification events i = 256 : 365 are presented in Table 

8.  

 

 
Table 8. p-values of Shapiro-Wilk test for groups ARILpari,j, POCmod pari,j, ARILtoti,j, POCmod toti,j and NSi,j, 

from verification events in model structures j = 1: num_str (p-value >0.05, hypothesis of normality accepted at a 

significance level of 95 %). 

 

 

MODEL STRUCTURE 

 
 

(1-1) (2-1) (2-2) (3-1) (3-2) (3-3) RC 

IN
D

IC
A

T
O

R
S

 ARIL par 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ARIL tot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

POCmod par 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

POCmod tot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

 

The hypothesis of normality is rejected at a significance level of 95 % (Shapiro-Wilk test p-

value < 0.05) for all the model structures and in all the verification indicators (Table 8). 

Therefore, the Kruskal-Wallis test is applied for verifying the null hypotheses: mean(I:,i) = 

mean(I:,j), for i and j = 1:num_str (Figure 43).  
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a) b) 

  

 

c) 

 

d) 

  
 

e) 

 

 

 

Figure 43. p-values of Kruskal-Wallis test for comparisons of groups mean(I:,i) = mean(I:,j), for all j = 1 : num_str 

in verification, with I: a) ARILpari,j, b) POCmod pari,j, c) ARILtoti,j, d) POCmod toti,j and e) NSi,j, (p-value < 

0.05 hypothesis of equal means rejected at a significance level of 95 %, comparisons in black).  

Kruskal-Wallis confirms for a significance level of 95 % (p-value < 0.05) that the ARILpar 

and ARILtot indicators for the RC model are significantly lower than for most of the TFs in 

verification (comparisons in black in Figure 43a, c). The NS values for model structure TF3,2 

are significantly lower than for all other cases in verification. Furthermore, the NS for RC (2 

parameters) is significantly higher than TF0,0 (1 parameter) (p-value <0.05). Indeed, no 

conclusive information is obtained from the POCmod par and POCmod tot indicators, due to 

the magnitude of the ARIL values (Figure 42a, c). One can also conclude from this S1 

approach in the verification stage that the RC performed significantly better than the TFs, 

regarding the size of the uncertainty intervals obtained in simulation. No particular 
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conclusions can be drawn from the results regarding comparisons of the NS values, as the 

performances for all model structures are very similar (NS about 0.6) (Figure 42e and Figure 

43e).  

 

Approach S2 for verification: ARILpar, POCmod par, ARILtot, POCtot and NS. 

 

For the verification events, the following results are obtained with S2 regarding ARILpar, 
POCmod par, ARILtot, POCmod tot and NS indicators (Figure 44). 

a) b) 

 
 

c) d) 

  
e)  

 

 

  
Figure 44. number of victories for model structure and group I:, a) ARILpari,j, b) POCmod pari,j, c) ARILtoti,j, d) 

POCmod toti,j and e) NSi,j,  for  each  i = 256 : 365 verification event and the model structures j = 1: num_str with 

23 victories as the threshold for a significance level of 95 % 

The S2 approach does not bring evidence towards recommending a best model structure from 

the analyzed cases in the verification data. Although the ARILpar and ARILtot are the only 

j j 

j j 

j 
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indicators in which any model structure reported significant victories (14 and 18 events for 

the case of RC in Figure 44a and Figure 44c, this number of victories can be attributed to 

randomness (23 for significance level of 95 %, from a binomial distribution).  

Calibration analyses indicated that the RC model structure is a reasonable recommendation 

from a parsimony perspective (avoiding over-parametrization, with only 2 parameters r and 

M0), as AIC and YICmod indicators are significantly lower than for the TFs by the S1 and S2 

approaches, keeping an average NS:, j > 0.6. This preliminary analysis is recommended in the 

HI-DBM framework, especially when verification data is insufficient, unrepresentative or 

computationally demanding. In the verification stage, the S1 approach reported significantly 

lower ARILpar and ARILtot values for the RC model than for the TFs. Furthermore, the NS 

for RC (2 parameters) is significantly higher than TF0,0 (1 parameter) (p-value < 0.05). No 

conclusive results are obtained in terms of reliability (POCmod indicators), given the 

magnitude of the ARIL values. 

 

A potential benefit from modelling the TSS load with TFs, i.e., in form of physically 

interpretable linear differential equations, is that information from previous time-steps 

(measured Q and/or simulated TSS load) is explicitly included in the calculations. However, 

the benefit of this approach remains unproved regarding the obtained results, as the 

performance indicators of the RC model are superior to the tested TFs, for cases in which 

significant conclusions could be drawn (AIC and YICmod in calibration and ARIL in 

verification). The benefits of RC compared to TFs might be explained from the non-linear 

properties of RC, as the implicit relation between Q and TSS load seems to be governed by a 

non-linear power law (results presented in Chapter 3 Figure 16, comparable to Daly et al., 

2014 and Sun et al., 2015). The TFs approach might be also restrictive for non-linear 

processes due to their linear nature. This can be also supported in the similarities of the 

averages of NS = 0.6 in verification for RC and TFs, which might be a result of the inherent 

non-linear power law relation between TSS and Q. 

The selection of the RC model structure as the most suitable option among the proposed 

models might by tempting, given the exposed reasons. However, the selection of a single 

model structure for cases in which different indicators I suggest a different “best” option is 

more challenging. For those cases, the following approaches can be recommended: (i) 

modeler’s principal interest (e.g. accuracy from NS, precision from ARIL or reliability from 

POCmod), (ii) weighting strategies among the indicators I (Marshall et al., 2007), multi-

objective analysis (Huang and Liu, 2010) with further statistical analysis (e.g. Pareto multi-

objective solutions, see e.g. Ye et al., 2014).   

On the other hand, the RC model structure by itself can be still considered as an unsatisfactory 

model, given that NS < 0.6 for about 50 % of the verification rainfall events and ARILpar > 

2.5 about 75 % of the verification events. On the other hand, the generally deficient 

performances of RC and TFs (TCP descriptions) can be also an evidence of the lack of a 

potential M process (TVP description). Therefore, the RC is retained for Chapter 7 as an 

appropriate enough description of W, towards reconstructing a potentially missed M process 

(TVP) by this TCP description. These results of M can be compared to the traditional 

accumulation/wash-off idea in Chapter 7.     

The results obtained when the input u(t) is equal to the flow rate Q are analogous for the R 

and Rcorr cases. The main difference is that all indicators from the verification stage (i.e. NS, 

ARIL and POCmod) present lower performances (e.g. mean NS = 0.4), although conserving 

similarities in terms of relative comparisons and the best model selection. This uncertainty 
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reduction by including the flow rate in TSS calculations has been previously reported 

(Sikorska et al., 2015), contrary to previous studies that claim the rainfall as a better predictor 

of TSS than Q (e.g. Vaze and Chiew, 2002; McCarthy et al., 2012; Manz et al., 2013). On the 

other hand, more performant models with Q as input might be expected when the predicted 

variable is the TSS load, as these values are directly calculated from the flow rate and the TSS 

concentrations. The rainfall correction applied in Chapter 5 to events with high measurement 

errors in rainfall Rcorr, led to improve the results compared to the use of the rainfall R as the 

predictor in RC and TFs model. Nonetheless, Rcorr did not show better performances than 

when Q is used as the predictor. This can be explained by the fact that Rcorr is directly 

obtained from Q (see details in Chapter 5), and therefore no information seems to be added by 

using Rcorr as a predictor instead of Q. Coupling a model by detailing rainfall and flow rate as 

two different inputs may be promising (e.g. Mannina and Vivianni, 2010; Métadier, 2011; 

Hong et al., 2016), when having enough information about the load separation in one 

component produced by rainfall and the other one from flow rate (surface and in the sewer), 

in order to avoid identifiability problems (Bonhomme and Petrucci, 2017). No relation 

between rainfall events with high rainfall errors (from Chapter 4) and bad performances of 

TSS models is found: only 42 % of the events highly influenced by rainfall errors (from 

Chapter 4) have also non-reproducible (NS < 0.8) TSS loads (by Q, R or Rcorr as input). This 

finding is contradictory to Manz et al. (2013), who found a relation between rainfall errors 

and TSS model performances, although from a different experimental setting and conceptual 

approach.       

The rainfall events for which RC reported unsatisfactory results (NS < 0.8) are neither 

reproducible by TFs, for the vast majority of cases (in calibration and verification). In 

addition, a PCA is undertaken, aimed to identify potential relations between the 

representability of a given event by a TCP model (RC or TFs) (events with NS < 0.8 red 

points and NS > 0.8 grey points) and physical characteristics of the event (max flow rate 

(m
3
/s), mean flow rate (m

3
/s), ADWP (days), beginning of the event (days)) (scaled by a z 

normalization, see Kreyszig, 1979) (Figure 45).  

 
Figure 45. PCA analysis with explanatory variables: max flow rate, mean flow rate, beginning of the event and 

ADWP, for the differences between calibration events with NS < 0.8 (red points) and NS > 0.8 (grey points), for 

the RC model. 
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The results in Figure 45 might lead to conclude that, if the unsatisfactory performances of the 

RC model (events with NS < 0.8 in red) are due to the lack of a potential deterministic 

process, this process is not dependent on the ADWP, as assumed by the vast majority of 

accumulation/wash off models (no separation between red and grey events) (Figure 45). 

Furthermore, a Wald Wolfowitz test (Wald and Wolfowitz, 1943) suggested that the 

distribution of these “red” or “grey” events in time, as a time series vector of binary states, is 

random (p-value < 0.05). 

 

6.4 CONCLUSIONS 

 

Different linear Transfer Functions (TF) models are tested as alternative descriptions to the 

non-linear traditional Rating Curve (RC) model, aimed to scrutinize for better representations 

of the stormwater TSS load dynamics as a function of flow rate or rainfall, without 

considering a virtual mass over the catchment decreasing process in time. The benefits of 

using flow rate or rainfall as inputs in the models are also discussed. The advantages of 

implementing the TFs for this “omitted virtual mass approach” compared to RC models 

remains unproved regarding the obtained results, as the performance indicators of the RC 

model are superior to those of the tested TFs, for cases in which significant conclusions could 

be drawn (especially parsimony in calibration and precision of the simulations). This can be 

explained from the non-linear properties of RC, as the implicit relation between flow rate and 

TSS load seems to be governed by a power law (Chapter 3).  

The rainfall correction applied in Chapter 5 to events with high measurement errors in rainfall 

improves the results compared to the use of the rainfall as the predictor in RC and TFs model. 

However, rainfall corrected according Chapter 5 does not show better performances than 

when the flow rate is used as the predictor. This can be explained by the fact that the rainfall 

corrections are directly estimated from the flow rate (see details Chapter 5), without adding 

information by using corrected rainfall as a predictor instead of the flow rate. No relation 

between rainfall events with high rainfall errors (from Chapter 4) and bad performances of 

TSS models is found: only 42 % of the events highly influenced by rainfall errors (in Chapter 

4) have also non-reproducible TSS loads by the flow rate or rainfall as input. Furthermore, a 

comparison between RC and TFs models is developed when the flow rate, rainfall or mean 

areal rainfall estimations from Chapter 5 are used as inputs. The main difference is a lower 

modelling performance when rainfall is used as input rather than flow rate (from mean NS of 

0.6 to 0.4 in verification events). On the other hand, the RC by itself can be still considered as 

an unsatisfactory model (e.g. NS about 0.6 in verification with flow rate as input), suggesting 

the lack of an essential missing process in this model. The unsatisfactory performances of the 

RC model are found to be independent of the ADWP, suggesting that a potential missed 

process in the RC model (if there is one) is not necessarily linked to temporality. 

Complementarily, statistical tests strengthen that the occurrence of these non-reproducible 

events by the RC model shows a random distribution in time. 
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CHAPTER 7. REVISITING CONCEPTUAL STORMWATER QUALITY 

MODELS BY RECONSTRUCTING VIRTUAL STATE-VARIABLES 

 

Extended version of:  

Sandoval S., Vezzaro L., Bertrand-Krajewski J.-L. (2017). Revisiting conceptual stormwater 

quality models by reconstructing virtual state-variables. Proceedings of the 14th International 

Conference on Urban Drainage, Prague, Czech Republic, 10-15 September, 3 p. 

 

7.1 INTRODUCTION AND BACKGROUND 

 

The RC model calibrated in Chapter 6 and selected from comparisons with multiple TFs (TCP 

models) can be directly linked with any traditional TVP formulation of M, by making M0 in 

the RC model (Eq 25) a time variable parameter (TVP). Indeed, one can ask for the existence 

of another deterministic global process missed by the RC model, essential to represent the 

pollutant loads, which is oversimplified or misinterpreted by the accumulation/wash-off idea.  

 

For this purpose, Time Variable Parameters (or virtual processes) (TVP) concept has been 

introduced in the hydrological and environmental context as a powerful statistical model-

based approach to describe unobserved processes or state variables (see e.g. DBM 

applications). The idea of TVP is to deliver a reasonable reconstruction, under certain 

hypotheses, of how one or multiple parameters of a mathematical model might vary in time, 

in order to make the output of the model to match the observed data. Different TVP 

estimation techniques are cited in the literature, where the time variations in the parameters 

can be assumed e.g. stochastic processes (Random Walk or Integrated Random Walk) 

(Pedregal et al., 2007; Young, 2012). However, most of these approaches are developed for 

linear models, without a wide flexibility in the hypotheses about the error model for the TVP 

estimation. From this perspective, Bayesian calibrations have emerged as a promising model-

based approach for reconstructing unmeasured inputs or state variables, adaptable to non-

linear and complex model structures, including flexibility in the error model of the 

reconstructed state variable (e.g. Sun and Bertrand-Krajewski, 2013a; Leonhardt et al., 2014). 

 

Therefore, this Chapter proposes to undertake Bayesian reconstructions of the “virtual” state 

variable M by modifying the RC traditional model in Eq 25, with r as a calibration parameter 

and replacing M0 by a TVP �̂�(t) (kg) (formulation F1). This �̂�(t) reconstruction can be 

directly compared to a time constant or variable traditional M formulation (e.g. Eq 24). As a 

complementarily analysis, a formulation F2 is explored, in which the RC model is modified 

with �̂�(t) (-) as the TVP to be reconstructed and M0 as a calibration parameter. The proposed 

approach led to revisit the accumulation/wash-off idea by using Bayesian TVP 

reconstructions and the RC model, scrutinizing for evidence of a deterministic global process 

and its interpretability as a “mean” state of available pollution washed by rainfall. 

Furthermore, this accumulation/wash-off model structure is sought to be reformulated by 

analysing the inter-event repeatability of the reconstructed state variables.  
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7.2 MATERIALS AND METHODS 

 

Bayesian reconstruction of virtual state variables by TVPs 
 

The reconstruction of a virtual state variable by Time Variable Parameters (TVP) consists in 

solving a calibration problem where a TVP is represented as an additional time series of 

parameters. In principle, every time-step of a TVP can be considered as an independent 

parameter in the inference scheme, with a length equal to the length of the output series load. 

However, the dimensionality of this problem will be massive, risking over-parametrization 

and delivering incorrect estimations (Vrugt et al., 2009). To avoid over-parametrization, the 

TVP time series has usually a coarser temporal resolution than the output data. Therefore, a 

time window strategy is adopted, reducing the dimensionality of the problem by dividing the 

TVP reconstruction into equally spaced time windows (see e.g. Sun and Bertrand-Krajewski, 

2013a). Further test with non-equally spaced time windows (see e.g. Chapter 5) reported 

analogue results.  

This TVP can be estimated jointly with the other set of calibration parameters θ (r for F1 and 

M0 for F2) by means of a Bayesian inference scheme. Therefore, θ and TVP are defined as 

random variables, where their joint posterior probability density function (PDF) is calculated 

by Eq 41 as p(θ, TVP/ Q, load), given the input Q(t) and output loadobs(t) data with some prior 

knowledge about θ and TVP (from BATEA in Kuczera et al., 2006, see application Kavetski 

et al., 2006a). p(θ, TVP/ Q, load) is a posterior probabilistic characterization of θ and TVP 

(�̂�(t) for F1 or �̂�(t) for F2), in which the values with the maximum likelihood are assumed be 

the “optimal” parameters θopt and TVPopt (�̂�(t)opt for F1 or �̂�(t)opt for F2).  

 

 

where n is the total observed load values in 𝑙𝑜𝑎𝑑𝑜𝑏𝑠(𝑡). 𝑙𝑜𝑎𝑑𝑠𝑖𝑚(𝑄(𝑡)𝑖, θ, 𝑇𝑉𝑃) is the 

simulated load by the input flow rate series 𝑄(𝑡) and a set of θ and TVP. p(θ) and p(TVP) 

represents a prior belief about the probability that a candidate set of θ and TVP values are 

“true” (assumed as a non-informative uniform distribution for all cases).  

 

Eq 41 allows to explicitly separate the model error of TVP (second Pi product) from the error 

model of the output load (first Pi product). With the purpose of finding a TVP estimation “as 

constant as possible” (and therefore less informative), the error model of TVP (second Pi 

product) is assumed to be proportional to TVP’s own variance Var(TVP). Both error models, 

for the load and TVP estimations (first and second Pi product resp.), are assumed to be 

independent and normally distributed, with the error variances �̂�𝑙𝑜𝑎𝑑𝑡
2 and �̂�𝑇𝑉𝑃 

2, 

respectively. �̂�𝑙𝑜𝑎𝑑𝑡 
2  is considered heteroscedastic, being equal to the square of the standard 

uncertainty of each observed value loadobs(t) (e.g. Sun and Bertrand-Krajewski, 2013a). On 

the other hand, �̂�𝑇𝑉𝑃 
2 is considered to be homoscedastic and is estimated as another 

parameter in the set θ (e.g. Sage et al., 2015), expressed as �̂�𝑀 
2 (kg) for F1 and �̂�𝑟 

2 (-) for 

F2. The same Eq 41 is used for calibrating the RC model, by omitting the second Pi product 

term, delivering p(θ/Q, load) as a posterior probabilistic characterization of θ (with θopt also 

for the “optimal” parameters) (results from Chapter 6). 

𝑝(θ, 𝑇𝑉𝑃 𝑄, 𝑙𝑜𝑎𝑑⁄ ) ⍺∏
1

√2𝜋�̂�𝑙𝑜𝑎𝑑𝑡 
2
𝑒𝑥𝑝 [−

1

2

(𝑙𝑜𝑎𝑑𝑠𝑖𝑚(𝑄(𝑡), θ, 𝑇𝑉𝑃) − 𝑙𝑜𝑎𝑑𝑜𝑏𝑠(𝑡))

�̂�𝑙𝑜𝑎𝑑𝑡 
2

2

] ∙

𝑛

𝑡=1

𝑃(θ) ∙∏
1

√2𝜋�̂�𝑇𝑉𝑃 
2
𝑒𝑥𝑝 [−

1

2

𝑉𝑎𝑟(𝑇𝑉𝑃)

�̂�𝑇𝑉𝑃 
2

]  

𝑛

𝑡=1

𝑃(TVP) Eq 41 
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The DREAM algorithm (Vrugt, 2016) is applied to solve Eq 41 and to evaluate the three 

formulations (the traditional RC, the F1 and F2 formulations) for the different θ and TVP 

variants (Table 9). The logarithmic form of Eq 41 is implemented to ensure numerical 

stability and a max. number of simulations of 6x10
5
 is used with a max. of 30 parallel Markov 

Chains to reach convergence (Gelman and Rubin RB convergence criteria > 1.2, see Gelman 

and Rubin, 1992). The TVPs reconstruction is undertaken with a resolution of 12 time 

windows (i.e. equivalent to 12 parameters, see Table 9), balancing between the convergence 

of the algorithm (RB > 1.2) and capturing the global dynamics of the TVPs (see application in 

Sun and Bertrand-Krajewski, 2013a). Table 9 summarizes the parameters min. and max. 

values search ranges in the prior uniform distributions p(θ) and p(TVP) in Eq 41. These 

ranges are defined for r and M0 from the literature (Kanso et al., 2005) and are equally 

adopted for each window of �̂�(t) and �̂�(t). The max. of the error variances �̂�𝑀 
2 and �̂�𝑟 

2 are 

defined, respectively, as 4 times the standard deviation of M0 and r in the RC calibration 

(Chapter 6).  

 

 

Table 9. DREAM solving of Eq 41 for virtual state variables reconstruction formulations, specifying the set of 

parameters θ and TVP, the total number of parameters and the min. and max. search range in the prior 

distributions p(θ) and p(TVP). 

Formulation Parameters θ  
Parameters 

in TVP  

Number of 

parameters  

θ + TVP 

Min/max search range values 

RC model 

(Chapter 6) 
r (-), Mo (kg)  - 2 r [0, 5] ; Mo[0 , 8e5]  

F1 r (-), �̂�𝑀 
2 (kg) �̂�(t) (kg) 2 + 12 = 14 r [0, 5] ; �̂�(t) [0 , 8e5] for each t ; �̂�𝑀 

2 [0 , 2.4e5] 

F2 M0 (kg), �̂�𝑟 
2 (-) �̂�(t) (-) 2 + 12 = 14 M0 [0 , 8e5] ; �̂�(t) [0 , 5] for each t ; �̂�𝑟 

2 [0 , 1.5] 

 

The parameters are estimated for each individual rainfall event (event-based calibration). This 

eliminated the need for a “dry build up” model (see e.g. Freni et al., 2009; Chow et al., 2015) 

as the initial sediment mass (M0) is estimated for each event. 

 

For each i-th calibration event, the parameter estimation results (posterior probability and 

optimal parameter sets) provide the basis for the model evaluation. This is performed by 

looking at: (i) the Nash-Sutcliffe efficiency (NSi) between simulated (loadsim(t)i) and observed 

(loadobs(t)i) loads, besides the well-posedness and identifiability of the Bayesian inference p(θ, 

TVP /Q, load)i (intra-event identifiability); (ii) similarities in the shape or dynamics of TVPopt i 

with estimations for other events (inter-event identifiability from repeatability); (iii) the 

capacity of a given set of θopt i and TVPopt i to represent another rainfall event measured by NSi 

(inter-event transferability, see Bardossy and Singh, 2008) and (iv) formulate further 

hypotheses about a potential missing process based on physical knowledge about the system 

and the obtained results (interpretability). 
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7.3 RESULTS AND DISCUSSION 

 

With illustrative purposes, the calculations related to the formulations proposed in Table 9 are 

illustrated for an example rainfall event i = 16 in Figure 46 and Figure 47 (event from 

23/09/2004 22:00 to 24/09/2004 07:00). The experimental data is used with Q(t) hydrograph 

as the input (Figure 46a) for representing the TSS load(t) pollutograph (Figure 46b) (black 

solid lines with 95 % coverage bands in grey). The TSS load simulated by the calibrated local 

set of parameters θopt 16 for the RC model is compared to results from F1 and F2 formulations 

(with θopt 16 and TVPopt 16) in Figure 46b (green, blue and red solid lines resp.).  

 

 

 

a) b) 

 

 
Figure 46. a) measured Q hydrograph (solid black) and b) measured TSS load pollutograph (solid black) 

including 95 % coverage intervals (grey bands), including simulations with θopt 16 and TVPopt 16 for RC, F1 and 

F2 (solid green, blue and red lines resp.).  

 

For the formulations F1 and F2 in Figure 47 (in blue and red resp.), the estimations of TVP16 

(�̂�(t)16 or �̂�(t)16) are represented with �̂�(t)opt 16 for F1 (blue solid line) and �̂�(t)opt 16 for F2 (red 

solid line), jointly with their blue and red coloured 95 % coverage intervals (Figure 47a and 

Figure 47b, resp.). Estimations of the θ16, i.e., r(-); �̂�𝑀 
2

16 (kg) (for F1) and M0 16 (kg); �̂�𝑟 
2(-) 

(for F2) are shown in two correlation plots (blue in Figure 47c and red Figure 47d, resp.).  
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Figure 47. Results from event 16, TVPopt 16 reconstructed time series (solid line) with 95 % coverage intervals 

(colored bands). a) �̂�(t) 16  for F1( blue). b) �̂�(t) 16  for F2 (red). The correlation matrix of θ16 for c) r16 (-); �̂�𝑀 
2

16 

(kg) (F1 blue) and d) M0 16 (kg); �̂�𝑟 
2 (-) (F2 red). 

 

Intra-event Identifiability   

 

Although there is an intrinsic correlation between RC model parameters (therefore for F1 and 

F2) due to the mathematical structure of the model (Kanso et al., 2005), the intra-event 

identifiability regarding θ and TVP gives promising results. The RC model local calibrations 

report unsatisfactory adjustments between the simulated and measured loads, with NSi < 0.8 

for 142 of the 255 events (56 %) (from Chapter 6).The F1 or F2 formulations achieve greater 

NS values in all the events, increasing the values of NSi > 0.8 for 60 % of cases in which RC 

reported NSi < 0.8. In the example shown in Figure 46, the NS for the RC model (green) is 

0.65, while the F1 (blue) and F2 (red) formulations show NS above 0.8. This analysis 

encourages the applicability of the studied model structures with local estimations of θopt i and 

TVPopt i, supporting the reasoning behind the F1 and F2 reconstructions as potential processes 

unrepresented by RC.  

However, these preliminary results should be analysed under a transferability perspective, as 

this improvement in NS values can be simply a numerical effect resulting from increasing the 

number of parameters in F1 or F2 formulations. For the case of TVPopt i, undesired 

correlations between the measured loadobs(t)i and the TVP parameters �̂�(t)opt i or �̂�(t)opt i  are 
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above 0.6 and 0.5 (respectively) for only 25 % of the events. This result brings evidence that 

the TVPopt i reconstructions are contributing with additional information (also as NS values are 

higher than for RC), without mimicking the measured load dynamic. Further tests with the 

CAPTAIN Toobox in Matlab (Pedregal et al., 2007) for TVP estimations, using comparable 

model structures (TFs), reported unsatisfactorily high correlations with the TSS load. The 

Reverse Modelling is another technique to reconstruct virtual state variables recommended to 

be merged with Bayesian estimations in Chapter 5, under a hydrological context. However, 

Reverse Modelling was found as an unfeasible reconstruction technique by using the RC 

model, given also the high correlations between the reconstructed TVPs with Q and TSS load. 

The strength of the proposed Bayesian method for reconstruction of TVPs relies in the 

flexibility regarding the likelihood function, including an appropriate error term of the TVPs, 

towards a “non-informative” reconstruction (second Pi product in Eq 41). 

 

For the case of θ parameters, the couples ri; �̂�𝑀 
2

i (for F1) and M0 i; �̂�𝑟 
2

i (for F2) exhibited an 

appropriate parametric identifiability in terms of their PDFs unimodality, with spurious 

parametric correlations Rho(ri; �̂�𝑀 
2

i) < 0.3 (F1) and Rho(M0 i; �̂�𝑟 
2

i) < 0.11 (F2), in 90 % of 

the i = 1 : 255 events (see example event: Rho(r16; �̂�𝑀 
2

16) = 0.05 in Figure 47c and Rho(M0 

16;  �̂�𝑟 
2

16) = 0.12 in Figure 47d). Although the PDFs of the error variances (�̂�𝑀 
2

i = 1:255 (F1) 

and �̂�𝑟 
2

i = 1:255 (F2)) are sharper close to the max. value of the search ranges given in Table 9 

(see example event �̂�𝑀 
2

16 and �̂�𝑟 
2

16 in Figure 47c and Figure 47d), the results are retained, as 

higher max. limits tended to ill-posedness in the inferences. 

 

Inter-event identifiability from repeatability  

 

A functional clustering by k-centre method is applied to identify groups of the TVPopt time-

varying curves with similar shapes (Chiou and Li, 2007, see environmental applications of 

functional data classification in e.g. Ternynck et al., 2016). A number of k groups is defined 

in order to visualize k different potential “repeated” behaviours in the set of optimal TVPopt 

curves. For interpretability, each of the TVPopt i curves is standardized by the transformation 

z(TVPopt i) with zero mean and unitary standard deviation (Kreyszig, 1979). For the F1 

formulation, applying the Chiou and Li (2007) functional method with e.g. k = 2 groups 

allows separating the �̂�(t)opt into two “similar” clusters, shown in Figure 48a (light and dark 

blue groups of curves, corresponding to about 57 % and 43 % of the events). The mean curves 

of each group are shown in the figure on the right, along with the corresponding 95 % 

coverage intervals. 
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a) b) 

  

c) d) 

  
 

Figure 48. Curves of TVP parameters (a) �̂�(t)opt i (blue) (c) �̂�(t)opt i (red) grouped by k = 2 clusters (light and dark 

colours groups). Mean curve and 95 % confidence intervals for (b) �̂�(t)opt i (blue) and (d) �̂�(t)opt i (red) (light and 

dark colours groups). 

 

The traditional interpretation of M can be preliminarily associated to the dark blue group, as 

the mean curve shows an apparent decaying trend (Figure 48b). However, this hypothesis 

would lack of an immediate physical interpretation for the remaining 57 % events (light blue 

group). Furthermore, the trends of the mean curves for the dark blue group (negative trend) 

and light blue group (positive trend) show to be statistically insignificant, due to the strong 

variability of the curves inside each light or dark blue group. This effect of randomness is 

stronger when the variability of �̂�(t)i (estimated by calculating the 95 % coverage intervals 

from the posterior distributions) is considered. Similar conclusions are drawn for clustering 

the �̂�(t)opt i curves into more groups (k > 2), and for the F2 formulation (Figure 48c and 

Figure 48d). These results reveal the difficulty in identifying or characterizing a unique virtual 

process potentially missed by the RC regarding an inter-event scale, given the lack of 

repeatability of the shapes of the TVPopt i curves. 
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Inter-event transferability  

 

The transferability of TVPs is analysed based on the methodologies proposed in Chapter 4, 

investigating how a given TVPopt i time series is able to reproduce another event from the 

dataset. Results for �̂�(t) or �̂�(t) are analogue, therefore discussion focuses on �̂�(t)opt,i 

estimations. Each of the 29 most transferable estimations of �̂�(t)opt i is able to explain at least 

30 rainfall events (NS > 0.8). On the other hand, for the “optimal” local estimations θopt i of 

RC, 60 estimations are able to explain at least 30 events (NS > 0.8). The flatter curves from 

�̂�(t)opt i = 1:255 tend to be more transferable, as they resemble the constant values in the RC 

formulation. These results stress the low transferability of the potential missing processes (F1 

or F2) to further rainfall events. 

 

Interpretability 

 

These results bring evidence of a potential missing process in the RC model. Although both 

processes (�̂�(t) or �̂�(t)) are good candidates to explain RC obstacles from an intra-event 

analysis, there is no evidence that F1 or F2 is a more valid approach than the other. Indeed, 

the F1 or F2 formulations show the same explanatory capacity, in the sense that none of them 

performs better. This highlights the challenge in terms of identifiability and unicity of a 

potential process missed by the RC model structure, which is hardly identifiable from an 

inter-event analysis. The low repeatability of the reconstructed TVP curves might suggest as 

more adaptable a random description of a potential missing essential process by RC models, 

rather than a deterministic interpretation regarding an inter-event scale.   

 

7.4 CONCLUSIONS 

 

This work suggests the missing representation of an essential process in the traditional Rating 

Curve model based on the observations from 255 rain events (from Chapter 6). The results 

indicate that the high unrepeatability of this missing process makes it hardly interpretable in 

terms of a virtual unique state of available TSS mass in the catchment that is decreasing over 

time, as assumed by a great number of traditional models. This Chapter shows how high-time 

resolution quality measurements can provide a support to revisit and question existing models, 

and to potentially allow developing new stormwater quality model formulations. 
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GENERAL CONCLUSIONS PART 3 

 

Chapter 6 and Chapter 7 are aimed to revisit the traditional approach of accumulation wash-

off models to represent the stormwater TSS loads pollutographs at the outlet of large urban 

catchments (> 100 ha), based on different concepts from the HI-DBM framework (Young, 

2013), the Bayesian methods applied for reconstruction of virtual state variables presented in 

Chapter 5 (for mean areal rainfall estimation) and the calibration frame in Chapter 4.  

 

The first stage of Part 3 (Chapter 6) explored different linear Transfer Functions (TFs) models 

as a possible alternative to the traditional Rating Curve (RC) models, considering the case in 

which a virtual mass over the catchment decreasing process is omitted. The expected 

advantages of implementing TFs compared to the RC model are not verified, as the 

performance indicators of the RC model are superior to the tested TFs (especially parsimony 

in calibration and precision of the simulations). This can be explained from the non-linear 

properties of RC, as the implicit relation between flow rate and TSS load seems to be 

governed by a power law (described in Chapter 3).  

 

The benefits of using flow rate or rainfall as inputs in the RC model are also discussed. No 

relation between rainfall events with high rainfall errors (from Chapter 4) and bad 

performances of TSS models is found: only 42 % of the events highly influenced by rainfall 

errors (in Chapter 4) have also non-reproducible TSS loads by the RC model (NS < 0.8). 

Furthermore, a comparison between RC and TFs models is developed when the flow rate, 

rainfall or mean areal rainfall estimations from Chapter 5 are used as inputs. The main 

difference relies in a lower modelling performance when rainfall is used as input rather than 

flow rate (mean NS 0.6 to 0.4 in verification events). On the other hand, the RC model by 

itself can be still considered as an unsatisfactory model (e.g. NS about 0.6 in verification with 

flow rate as input), suggesting the lack of an essential missing process in this model. 

Furthermore, the unsatisfactory performances of the RC model are found to be independent of 

the ADWP, suggesting that this potential missed process is not necessarily linked to 

temporality, as assumed by the majority of accumulation/wash-off models. Complementarily, 

statistical tests strengthen that the occurrence of these not representable events by the RC 

model is randomly distributed in time.  

 

Chapter 6 suggests the missing representation of an essential process in the RC model based 

on the observations from 365 rain events, without further scrutinizing about how the shape or 

dynamics of this process could be. Therefore, Chapter 7 applies the Bayesian rainfall 

reconstruction method explored in Chapter 5 as a more general estimator of virtual state 

variables, which is used for undertaking an intra-event reconstruction of this potential missing 

process in 255 rainfall events. The results of Chapter 7 indicate that these potential missing 

processes, although identifiable at the intra-event scale, are hardly interpretable in terms of a 

unique state of a virtual available mass over the catchment that is decreasing over time, as 

assumed by a great number of traditional models. Furthermore, the reconstructed processes 

are highly unrepeatable regarding their shape, besides having a low transferability to other 

rainfall events (transferability notions established in Chapter 4). This study shows how high-

time resolution quality measurements can provide a support to revisit and question existing 

models, and to potentially allow developing new stormwater quality model formulations. 
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GENERAL CONCLUSIONS AND PERSPECTIVES 
 

 

 

The measurement of Total Suspended Solids (TSS) in urban drainage systems is often 

required for scientific, legal, environmental and operational reasons, as particulate matter 

constitutes a major source of surface water contamination (Ashley et al., 2004; Chebbo and 

Gromaire, 2004). However, the reliability of TSS measurements strongly depends on the 

quality of the collected samples, which should be representative of real field conditions in the 

monitored sewer pipe (Larrarte, 2008; Métadier and Bertrand-Krajewski, 2012). Therefore, 

appropriate data acquisition and validation methodologies for TSS measurements in urban 

drainage systems are required (Bertrand-Krajewski and Muste, 2007). The role of hydrology 

and rainfall measurements is recognized in TSS modelling, as rainfall is the driving process in 

the contamination of receiving water bodies by stormwater (Lee et al., 2002). Rainfall data 

and hydrological models are also known to be embedded with high uncertainties, impacting 

the performance of TSS stormwater models. Apart from uncertainties in rainfall and TSS data, 

the TSS stormwater traditional model structures have been widely questioned at the scale of 

large urban catchments, especially when reproducing data from online measurements (e.g. 

Métadier, 2011; Dotto et al., 2011). The manuscript is mainly developed with online flow 

rate, TSS and rainfall measurements from the Chassieu urban catchment (Lyon, France), 

monitored by the OTHU project (Field Observatory for Urban Hydrology - www.othu.org). 

Information includes 365 rainfall events measured between 2004 and 2011 (see a detailed 

description of the catchment in Chapter 1). 

Different hypotheses about why TSS models are still unsatisfactory have been explored, 

motivated by the following scientific questions: 

- Are TSS online continuous time series reliable and useful for modelling purposes?  

- Do this time series show bias or insufficient representativeness?  

- How to better calibrate rainfall-runoff models if model parameters are event-dependent?  

- If rainfall-runoff models are not satisfactory, could we assume that this is mainly due to 

errors in rainfall measurements and can we identify/correct them?   

- Are traditional TSS models appropriate when they are used with online continuous TSS time 

series instead of traditional samples?  

- Is there an event-dependent relation between rainfall errors and deficient performances of 

TSS models?  

- How could we revisit/improve TSS traditional models?  

In Chapter 2, different sampling strategies during rainfall events are simulated and evaluated 

by means of online TSS and flow rate measurements. The average relative sampling error and 

the residuals distribution are estimated from Event Mean Concentrations (EMCs) simulated 

by the studied strategies, compared to EMCs obtained by the complete time series from online 

monitoring of various rainfall events. For the Chassieu data set, the strategy with the sampling 

volume proportional to runoff volume between two samples, with constant sampling intervals, 

delivers the most representative results in terms of accuracy, precision and uncertainties 

propagation. Recommended sampling time intervals are of 5 min, with average sampling 
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errors between 7 % and 20 % and uncertainties in sampling errors of about 5 %, depending on 

the sampling interval. These results lead to hypothesize about the potential errors in TSS data, 

highlighting that data obtained from monitoring campaigns (sampling strategies) could still be 

used as an input for intra-event TSS models in the absence of online measurements. However, 

potential errors or biases in the EMCs by means of modelling strategies such as bias 

correction factors are recommended to be accounted for in the calibration process.  

In Chapter 3, the probability of underestimating the cross section mean TSS concentration is 

estimated to be approximately 0.88 or 0.64 for all the flow velocity values, by two proposed 

methodologies: the Simplified method (SM) and the Time Series Method (TSM). TSM shows 

more realistic TSS underestimations (about 39 %) than the SM (about 269 %). Differences 

between the two methods are mainly due to simplifications in SM (absence of TSS 

measurements and operation of the sampling system). SM can estimate the sampling depth at 

which the probability of over estimation is equal to the probability of underestimation (about 

5 % of the total depth, with the proposed hypotheses). SM assumes a significant asymmetry of 

the TSS concentration profile along the vertical axis in the cross section. This is compatible 

with the distribution of TSS measurements found in TSM. Furthermore, a power law 

describing the TSS as a function of flow rate is revealed, including higher variances of TSS 

for higher flow rates. Results from Chapter 2 and Chapter 3 provide insights towards an 

indicator of the measurement performance and representativeness for a TSS sampling 

protocol. 

In Chapter 4, the nature of model structure uncertainty and the inter-event parametric 

variability is addressed for a conceptual rainfall-runoff model based on the idea of assessing 

the parameters marginal probability function (obtained by event-by-event calibrations) into 

conditional probability functions (obtained by grouping the parameters from the event-by-

event calibrations). The results stress the importance of carefully selecting the data to be used 

for parameter estimations and further hydrological simulation, considering that the proposed 

parameter estimation strategy significantly improves the results in terms of accuracy and 

precision in verification, compared to the parameter estimation strategies based on event-by-

event and multi-event calibrations. The Nash-Sutcliffe criterion (NS) obtained by the 

proposed parameter estimation strategy is improved from 0.4 to 0.6, for 50 % of the 

verification rainfall events, compared to traditional calibration strategies. One single rainfall-

runoff model structure allows representing two groups of different hydrological conditions for 

an urban catchment by the proposed strategy, leading also to identify (i) bimodalities in the 

parameters and (ii) rainfall events with high errors in rainfall measurement. Chapter 5 

presents a methodology aimed to estimate mean areal rainfall, based on a hydrological model 

and flow rate data. This model-based approach demonstrates the advantages, compared to 

previous approaches in the literature, of correcting rainfall by multiplying factors over 

constant-length time window and rainfall zero records are filled with a reverse model. 

Chapter 6 explores different linear Transfer Functions (TF) models alternative to the 

traditional Rating Curve (RC) models, considering the case in which a virtual mass over the 

catchment decreasing process is omitted. From flow rate, rainfall and corrected rainfall tests 

as different potential inputs, no relation between rainfall errors or hydrological conditions 

with performances of RC and TFs could be established. The expected advantages of 

implementing the TFs compared to the RC model are not verified, as the performance 

indicators of the RC model are superior to the tested TFs (especially parsimony in calibration 

and precision of the simulations). This can be explained from the non-linear properties of RC, 

as the implicit relation between flow rate and TSS load seems to be governed by a power law 

(described in Chapter 3). This Chapter 6 suggests the missing representation of an essential 
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process in the RC model, based on its performance (NS of about 0.6 in verification, with 110 

events). The unsatisfactory performances of RC model are found to be independent of the 

antecedent dry weather period, suggesting that a potential missed process in the RC model (if 

there is one) is not necessarily linked to temporality. Complementarily, statistical tests 

strengthen that the occurrence of these not representable events by the RC model is randomly 

distributed in time. These results are used as an input for Chapter 7, defining the RC as a 

candidate model to be improved or revisited by defining its parameters as virtual state 

variables. The advantages of selecting RC among a wider family of models (given by 

different TFs), besides mentioned aspects regarding its performance, is the potential 

interpretability of RC time varying parameters as a decreasing virtual available mass. 

Therefore, Chapter 7 applies the proposed Bayesian rainfall correction method explored in 

Chapter 5 as a more general Bayesian reconstruction method of virtual state variables with the 

RC model. Results indicate that these potential missing processes in RC description are hardly 

interpretable in terms of a unique state of virtual available mass over the catchment that is 

decreasing over time, as assumed by a great number of traditional models. Furthermore, the 

reconstructed processes are highly unrepeatable regarding their shape, besides having a low 

transferability to other rainfall events. This manuscript shows how high-time resolution 

quality measurements can provide a support to revisit and question existing models, and to 

potentially allow developing new stormwater quality model formulations for large urban 

catchments. 

Probably the first recommendation that can be formulated from the work presented in this 

manuscript is to implement the proposed methodologies in further urban catchments with 

similar data, aimed to compare and provide more generality to the conclusions herein 

presented. The results from Chapter 2 can be validated by comparing the EMCs obtained from 

real autosamplers operated in situ with different sampling strategies, to the EMCs obtained 

from TSS online monitoring. Moreover, TSS models aimed to represent the complete 

pollutograph can be calibrated with data obtained by different sampling strategies and 

compared to model calibrations with online monitoring. These explorations might lead to 

formulate complementary modelling recommendations for cases in which TSS online data is 

not available. 

TSS measurements in different points of the cross section of the sewer system (e.g. Larrarte, 

2008) can be recommended in order to further compare and validate the methodologies 

proposed in Chapter 3. These methods could be extended, by similar theoretical assumptions, 

to assess the uncertainties not only due to the vertical but also due to the transversal sampling 

intake position in the cross section of the sewer system or other field conditions. Furthermore, 

the conception of new measurement devices could be envisaged for measuring online the TSS 

3D profile of the cross section in the sewer system. This information would be very useful for 

validating several of the hypotheses proposed in this manuscript, regarding the 

representativeness of the studied TSS time series. On the other hand, the representativeness of 

TSS measurements due to further uncertainty sources and field sampling conditions such as 

the pumping velocity of the sampling tube or the time shift due to the pumping operation 

(Rossi, 1998) can be assessed in future works. These uncertainty sources can be included with 

further hypotheses regarding, for example, theoretical pumping velocities and operation. 

However, mentioned assumptions are recommended to be verified with further experiments in 

all cases.  

The spatial variability of the rainfall and its influence on the performance TSS models can be 

further explored, by the use of mean areal rainfall estimations that are non-dependent on flow 
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rate data. These mean areal rainfall estimations can be obtained by using information from 

other rain gauges, radar data or by microwave links as recently proposed (van het Schip et al., 

2017). Furthermore, a continuous approach for representing the inter-event variability instead 

of a discrete classification of the events can be recommended, given the lack of physical 

interpretability regarding the boundary between classification groups (e.g. highest or lowest 

rainfall intensity), which at the end are model and data dependent. Nevertheless, the proposed 

approach could be an input for reformulating the selected model structure, seeking to include 

physically-based continuous terms to reproduce the parametric variability instead of 

establishing discrete hydrological conditions, also avoiding the parametric dependency on e.g. 

rainfall characteristics (e.g. Chapter 6 and 7; Young, 1998). Extending the modelling 

calibration methods presented in Chapter 4 by including a better understanding of rainfall 

uncertainties, jointly with the implementation of further hydrological models, may also lead to 

improve the performance of rainfall-runoff modelling for the studied catchment. However, the 

calibration methodology proposed in Chapter 4 in its current state offers enough flexibility to 

be applied towards a better understanding of the local/global nature of input data/model 

structure uncertainties for further modelling frames in the urban drainage field. For example, 

in Chapter 6, the calibration method is applied into the water quality modelling context, 

leading to identify irreproducible events by different water quality models. 

The Bayesian reconstruction method applied to rainfall and TSS mass reconstructions in 

Chapter 5 and Chapter 7, respectively, may constitute a powerful tool for hypotheses testing 

in urban drainage models. In principle, this reconstruction method could be applied to 

formulate a reasonable hypothesis about the dynamics of any input, output or virtual state 

variable of a mathematical model, by means of the available data. This might open a wide 

range of possibilities for increasing the understanding of mathematical models commonly 

used in the urban drainage context, as demonstrated in this manuscript for the case of 

traditional TSS models. 

Coupling a TSS model by including rainfall and flow rate as two different inputs may be 

promising (e.g. Métadier, 2011), when having enough information about the TSS load 

separation in one component produced by rainfall and the other from flow rate (surface and in 

sewer processes). Furthermore, exploring physically detailed TSS models might also be a 

potential alternative (Hong et al., 2016), when extensive granulometric measurements are 

available, coupled with a better understanding of physical processes inside the sewer 

processes (e.g. TSS resuspension, transfer). Therefore, TSS modelling approaches in their 

current state of development still represent important challenges, in the absence of data and 

representative information about the load dynamics inside the system.  

From the above lines, many scientific questions can be formulated for incoming 

investigations. The following examples can be proposed: 

- Are the results obtained in the different parts of this investigation generalizable to other 

urban catchments? 

- What is the effect of calibrating and using TSS models with traditional samples data for sites 

in which online data is not available?  

- What is the influence of the sampling intake position in the cross section of the sewer system 

over the representativeness of TSS measurements from a 3D analysis?  

- Can a better rainfall-runoff model structure be proposed for the studied catchment?  
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- Can the performance of TSS models be improved by considering mean areal rainfall 

estimations non-dependent in flow rate data as additional modelling inputs?  

- What are the benefits in terms of modelling performance when physically detailed TSS 

models are calibrated by using more detailed data (e.g. granulometric measurements, TSS 

online data recorded at different points inside the urban drainage system)?  

- Can we still revisit these physically detailed TSS models by means of more detailed data and 

the Bayesian reconstruction methods proposed in this manuscript? 
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APPENDICES 
 

1. PRESENTATION DES RESULTATS MAJEURS DE LA THESE – RESUME 

ETENDU EXIGE POUR UNE THESE REDIGEE EN ANGLAIS 

(PRESENTATION OF THE PRINCIPAL RESULTS OF THE THESIS –LONG 

ABSTRACT DEMANDED FOR A THESIS WRITTEN IN ENGLISH) 

 

CHAPITRE 2 Evaluation de performance et d’incertitudes dans les stratégies 

d’échantillonnage d’eaux de pluie, fondée sur le débit et les séries chronologiques 

de charge totale de solides en suspension 

 

Introduction 

 

Un indicateur commun pour estimer les émissions polluantes est la Concentration Moyenne 

d’Evénement (CME), qui est très variable selon les stratégies d’échantillonnage adoptées (Lee 

et al., 2007; Ki et al., 2011). Les stratégies d’échantillonnage sont des règles d’applications 

pour l’échantillonnage de polluants, par exemple les charges Totales de Matière en 

Suspension (MES), pendant des événements pluvieux avec un échantillonneur automatique. 

La valeur CME est estimée en mélangeant manuellement ou automatiquement les échantillons 

individuels collectés dans un bocal à échantillon (Lee et al., 2007). Le plus gros inconvénient 

pour évaluer quelle stratégie d’échantillonnage peut apporter les CME les plus justes est que 

le “vrai” CME ou le CME “de référence” est établi à travers des suppositions théoriques, vu le 

manque de données de concentration (par exemple : Ma et al., 2009; Ki et al., 2011) . D’autre 

part, de nombreux auteurs ont rapporté les bénéfices du suivi en ligne pour expliquer la 

variabilité significative de la qualité des eaux de pluie. En conséquence, le suivi en ligne 

émerge comme une alternative prometteuse pour l’estimation des “vrais” CME ou des CME 

“de référence” à travers une série de conditions. La présente étude propose de simuler et 

d’évaluer différentes stratégies d’échantillonnage (exemple : Ackerman et al., 2010) en 

utilisant un débit de haute résolution et une série chronologique de MES pendant des 

événements pluvieux. Les CME de stratégies d’échantillonnage sont simulés en 

échantillonnant des séries chronologiques de TSS et en calculant une moyenne pondérée des 

échantillons par leurs volumes d’échantillonnage. Ces CME “simulés” sont comparés au 

“vrai” CME calculé comme une moyenne pondérée du débit complet et des séries 

chronologiques de MES pendant l’événement pluvieux. 

 

Matériels et méthodes 

 

Les quatre cas internationaux sont les suivants: i) Berlin, Allemagne (débordement d’égouts 

unitaire, surface de 100 ha, 22 événements pluvieux); ii) Chassieu, France (réseau séparatif 

des eaux, surface de 185 ha, 75 événements pluvieux); iii) Graz, Autriche (débordement 

d’égouts unitaire, surface de 335 ha, 85 événements) and iv) Ecully, France (réseau d’égouts 

unitaire, surface de 245 ha, 200 événements pluvieux). Les CME obtenus à partir de stratégies 

d’échantillonnage (CEMsim) sont simulés en échantillonnant des séries chronologiques de 
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MES et en calculant une moyenne pondérée des valeurs MES “échantillonnées” par leur 

volume d’échantillon. Les valeurs CEMsim sont ensuite comparés aux “vrais” CME 

(EMCtrue) calculés comme une moyenne pondérée du débit et des séries chronologiques de 

TSS pendant l’événement pluvieux. 

Quatre stratégies d’échantillonnage typiques sont étudiées : i) stratégie d’échantillonnage à 

intervalle temporel constant et volume constant (cTcSV): les échantillons sont collectés à des 

intervalles temporels constants, les volumes d’échantillonnage sont également constants (par 

exemple: échantillonner toutes les 10 minutes un volume d’échantillonnage de 0.4L), ii) 

stratégie d’échantillonnage à intervalle temporel constant et proportionnel à la décharge 

(cTpQ): les échantillons sont collectés à des intervalles temporels constants et les volumes 

d’échantillonnage sont prédéfinis comme proportionnels au débit instantané mesuré au pas de 

temps d’échantillonnage (par exemple : échantillonner toutes les 10 minutes un volume 

d’échantillonnage de 0.2L si le débit instantané est de 0.2 m3/s), iii) stratégie 

d’échantillonnage à intervalle temporel constant et proportionnel au volume (cTpV): les 

échantillons sont collectés à des intervalles temporels constants et les volumes d’échantillons 

sont prédéfinis comme proportionnels au volume de débordement cumulé depuis le dernier 

échantillon (par exemple : échantillonner toutes les 10 minutes un volume d’échantillonnage 

de 0.1L si le volume de débordement depuis les échantillons précédents est de 10 m3), et iv) 

stratégie d’échantillonnage à intervalle temporel variable et volume de débordement constant 

(vTcV): les échantillons sont collectés à un volume de débordement cumulé prédéfini depuis 

l’échantillon précédent (e.g. échantillonner avec constance le volume de 0.4 L pour un 

volume de débordement cumulé de 10 m3 entre échantillons). L’erreur quadratique moyenne 

relative (MSRE) entre EMCtrue et EMCsim et son incertitude élargie CI(MSRE) sont utilisés 

comme des indicateurs de performance pour les stratégies d’échantillonnage. Les incertitudes 

standard dans les données utilisées pour des calculs se trouvent dans i) les volumes 

d’échantillonnage (4.5 %), ii) les analyses laboratoire de TSS (7.5 %), iii) la mesure en ligne 

(selon la technologie et la méthode de calibration) et iv) les temps de début et de fin 

d’événements pluvieux (respectivement 5 % et 7.5 % de la durée des précipitations). 

Résultats 

 

Les résultats sont résumes dans le Figure 1, dans lequel MSRE (lignes continues) et 

CI(MSRE) (bandes de couleur) sont donnés pour les intervalles temporels d’échantillonnage 

entre 1 et 60 minutes sur l’axe horizontal inférieur (stratégies cTcSV, cTpQ et cTpV). L’axe 

horizontal supérieur montre les différents volumes de débordement utilizes pour évaluer la 

stratégie vTcV, avec les intervalles temporels moyens correspondants sur l’axe horizontal 

inférieur (Figure 1).  
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 Figure 1. MSRE (ligne continue) et CI(MSRE) (bandes de couleur) pour les différents 

intervalles temporels d’échantillonnage pour les stratégies cTcSV (noir), cTpQ (rouge) and 

cTpV (bleu) sur l’axe horizontal inférieur et différents volumes d’échantillonages pour la 

stratégie vTcV (vert) sur l’axe horizontal supérieur pour a) Berlin, b) Chassieu, c) Graz et d) 

Ecully. 

Conclusions 

 

La stratégie d’échantillonnage la plus représentative pourrait être cTpV, en utilisant des 

intervalles d’échantillonnage d’à peu près 5 minutes pour Berlin et Chassieu resp. zones de 

100 et 185 ha) et 10 minutes pour Graz et Ecully (resp. zones de 335 et 245 ha), plaçant 

MSRE entre 7 % et 20 % et CI(MSRE) vers 5 %. 
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CHAPITRE 3 Estimation de l’influence du point d’échantillonnage des matières en 

suspension dans une section de réseau d’assainissement 

 

Introduction 

 

Le mesurage des matières en suspension (MES) dans les systèmes d’assainissement urbains 

est essentiel pour des raisons scientifiques, environnementales, opérationnelles et 

réglementaires. Cependant, la validité des résultats de mesure (pour différents usages tels que 

le calage et la vérification de modèles, la gestion des ouvrages et l’autosurveillance) dépend 

étroitement de la qualité des données qui doivent être représentatives des conditions réelles in 

situ. Des méthodes spécifiques sont donc nécessaires pour garantir l’acquisition et la 

validation appropriées des concentrations en MES mesurées dans les prélèvements en réseau. 

Afin d’estimer la qualité des données, de nombreux travaux de recherche ont été consacrés à 

la détermination des incertitudes expérimentales sur les mesurages en ligne et en laboratoire 

des concentrations en MES (Harmel et al., 2006; Harmel et Smith, 2007; Joannis et al., 2008; 

Métadier et Bertrand-Krajewski, 2012). En revanche, l’influence des conditions 

d’échantillonnage in situ (par exemple la hauteur du point de prélèvement ou de mesurage 

dans la section, les vitesses d’aspiration ou l’orientation du tube de prélèvement) sur la 

représentativité des valeurs mesurées n’a pas fait l’objet d’autant d’investigations dans la 

littérature (Shelley, 1977 ; Berg, 1982 ; Rossi, 1998 ; Larrarte et Pons, 2011). Une approche 

préliminaire a été établie par Métadier (2011), sur la base de l’expérience des  techniciens 

(comme 10 % de la valeur mesurée).    

Les incertitudes associées à la localisation du point d’échantillonnage de MES dans la section 

transversale du collecteur sont habituellement négligées, en admettant que la valeur mesurée 

est égale à la concentration moyenne vraie dans la section. Cette hypothèse semble valide 

pour des collecteurs présentant des vitesses d’écoulement élevées susceptibles d’assurer une 

homogénéisation satisfaisante des concentrations en MES à travers la section. Cependant, le 

gradient vertical de concentration en MES ne peut pas être négligé pour d’autres conditions 

hydrodynamiques, notamment aux faibles vitesses. Lorsque c’est le cas, la différence entre la 

valeur mesurée et la concentration moyenne réelle peut être due à plusieurs sources : i) la 

variabilité de la position représentative de la concentration moyenne à travers la section, ii) la 

variabilité de la position du point de prélèvement dans la section transversale et iii) les 

incertitudes des variables physiques (ex. débit, coefficient de rugosité, propriétés 

géométriques) (Figure 1). 

Nous proposons de traiter ces sources de variabilité en terme de probabilité, estimée par une 

approche de type Monte Carlo avec 1000 simulations. Il a été considéré le nombre de fois où 

la localisation du point d’échantillonnage sur le profil de concentration vertical (valeur 

mesurée) était égale à la position représentative de la concentration moyenne (sous 

l’hypothèse de l’homogénéité des profils horizontaux de concentration). La méthode proposée 

estime la représentativité des mesurages au moyen du facteur correctif ROU (ratio of over- or 

under-estimation) par lequel il faut multiplier la concentration mesurée pour obtenir la 

concentration moyenne vraie. 
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Matériels et méthodes 

 

La méthode proposée a été testée avec les séries chronologiques de concentration C en MES, 

débit Q et hauteur d’eau h mesurées en 2007 pour 89 événements pluvieux, au pas de temps 

de 2 minutes, à l’exutoire du réseau séparatif pluvial de Chassieu, France. Les autres 

grandeurs nécessaires aux calculs sont i) la section mouillée au point de mesure, ii) le 

coefficient de Manning-Strickler KMS du collecteur et iii) la vitesse de chute ws des MES. Les 

incertitudes de toutes les variables sont également déterminées. Les variables, les conditions 

expérimentales et le profil de concentration en MES sont représentés schématiquement Figure 

1. 

 

Figure 1. Schéma de principe avec les variables principales, le profil de concentration et le 

point de prélèvement, avec H la hauteur d’eau, z la hauteur de la prise d’échantillon, 𝑦𝑐 la 

hauteur correspondant à la concentration moyenne sur le profil vertical de concentration C(h) 

et a* la hauteur de référence du profil de concentration (voir détails Coleman, 1982; 

Verbanck, 2000). 

Des études antérieures ont montré que la forme du profil vertical de concentration en MES, 

ainsi que la profondeur 𝑦𝑐 correspondant à la concentration moyenne, dépendent fortement de 

la vitesse (Coleman, 1982; Verbanck, 2000). Un profil de concentration relativement 

uniforme est attendu pour les valeurs élevées de débit assurant des conditions de turbulence et 

de bon mélange. Néanmoins, pour des valeurs de débit plus faibles, la concentration en MES 

sera plus élevée près du radier (Coleman, 1982; Verbanck, 2000). Le problème consiste donc 

à estimer l’écart entre la concentration en MES mesurée sur un échantillon prélevé à la 

hauteur z et la concentration moyenne à la hauteur 𝑦𝑐, sous les hypothèses théoriques 

proposées. La position y représentative de la concentration moyenne en MES est considérée 

comme une variable aléatoire avec 𝐸[𝑦] =  𝑦𝑐   et une fonction de densité de probabilité (pdf) 

fondée sur le profil vertical théorique de concentration proposé par Coleman (1982) et 

Verbanck (2000), avec les grandeurs Q, ws, ks, h et D permettant de calculer le nombre de 

Rouse η (voir détails dans Verbanck, 2000). La courbe C(h) est normalisée pour rendre son 

aire égale à 1 indépendamment de η. La probabilité p(z = 𝑦𝑐) peut alors être calculée pour une 

hauteur d’échantillonnage z quelconque. Si 𝑦𝑐 est proche au fond du collecteur (faibles 

valeurs du débit Q), une hauteur z plus proche de la surface libre supérieure à 𝑦𝑐 conduit à une 

sous-estimation de la concentration en MES. Réciproquement, dans le cas où z est inférieure à 

𝑦𝑐, il y a surestimation de la concentration en MES. Avec la méthode de Monte Carlo, deux 

autres sources de variabilité sont prises en compte: i) la variation de la hauteur de prélèvement 

z supposée suivre une distribution uniforme sur la verticale entre 0.25 H et 0.75 H, et ii) les 

incertitudes sur les grandeurs physiques Q, ws, ks, h et D supposées normalement distribuées. 

H

h

a*

z

𝑦𝑐 Profil de concentration C(h)

Point de prélèvement

h 
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Les incertitudes de ces grandeurs permettent de calculer la distribution de probabilité du 

nombre de Rouse, lequel a un impact direct sur la variabilité de 𝑦𝑐. Les résultats sont 

présentés en mettant en rapport l’évolution du ratio ROU et celle de la vitesse moyenne de 

l’écoulement Um au cours des événements pluvieux, avec pour objectif de déterminer pour 

quelles valeurs de la vitesse d’écoulement le point d'échantillonnage conduit à des valeurs de 

concentrations en MES mesurées qui sur- ou sous-estiment la concentration moyenne vraie, et 

ceci pour l’ensemble des 89 événements pluvieux. 

 

Résultats et discussion 

 

La figure 2 montre les résultats pour la période du 20/08/2007 08:06 au 22/08/2007 01:38 

extraite des séries chronologiques. La probabilité d’avoir une concentration mesurée égale à la 

concentration moyenne est proche de 1 pour des vitesses d’écoulement supérieures à 0.5 m/s 

(Figure 2 gauche). Ce résultat est conforme avec ceux d’études similaires (par exemple 

Larrarte, 2008). Toutefois, les valeurs de vitesse ont été supérieures à 0.4 m/s, ce qui n’a pas 

permis d’analyser comment se dégrade la représentativité (comme ROU) au fur et à mesure 

que la vitesse moyenne descend (en-dessous de 0.4 m/s). Un nombre de Rouse η inférieur à 

0.6 est supposé correspondre à un mélange complet et à une concentration homogène sur la 

verticale, ce qui est la situation la plus fréquente pour les séries chronologiques étudiées ici 

(Figure 2 droite). 

 

Figure 2. Pour la période du 20/08/2007 08:06 au 22/08/2007 01:38 – A gauche : ROU 

(moyenne et intervalle de confiance à 90 %) et vitesse moyenne d’écoulement Um ; à droite : 

ratio 𝑦𝑐/H et nombre de Rouse . 

Une sous-estimation de la concentration en MES pour des valeurs de ROU comprises entre 

1.04 et 1.10 se produit pendant 95 % de la durée des 89 événements pluvieux, 

particulièrement lorsque les vitesses d’écoulement sont faibles. La valeur médiane de ROU est 

égale à 1.07. Cette sous-estimation systématique de la concentration moyenne en MES peut 

être expliquée par le fait que l’espérance de z égale à 0.5 H est supérieure à l’espérance de 𝑦𝑐 

qui est de l’ordre de 0.4 H.  

Pour les faibles valeurs du débit Q (principalement au début et à la fin des événements 

pluvieux), l’incertitude type u(η) est élevée et la valeur de 𝑦𝑐 est déterminée avec une grande 

incertitude également. Une attention particulière doit donc être portée aux débuts et fins 

  

ROU 
Rousse 



145 

 

d’événements pluvieux, périodes pendant lesquelles le risque est plus important d’observer 

une sous-estimation de la concentration en MES. Afin d’améliorer les mesures in situ les 

gestionnaires pourrions prendre en compte ces types d’incertitudes.  

 

 

CHAPITRE 4 Modélisation pluie-débit : stratégie améliorée de calage et estimation des 

incertitudes guidée par les données 

 

Introduction 

 

Déterminer une stratégie robuste pour quantifier les incertitudes paramétriques et de calcul 

des débits reste un défi clé en hydrologie (Thyer et al., 2009; Ye et al., 2014). L’estimation 

des incertitudes des paramètres par le calage de plusieurs évènements pluvieux de manière 

chronologique est une stratégie courante (e.g. Tan et al., 2008; Thyer et al., 2009; Mancipe-

Munoz et al., 2014). Cependant, le calage multi-évènementiel fournit un jeu moyen de 

paramètres, avec des incertitudes généralement sous-estimées, en négligeant la diversité des 

conditions hydrologiques possibles sur un bassin versant (Thyer et al., 2009). En effet, la 

valeur optimale des paramètres obtenue en faisant un calage évènement par évènement peut 

varier de manière significative en raison des changements stochastiques des conditions du 

bassin versant (Thyer et al., 2009; Ajmal et al., 2015). De plus, les sous-estimations 

systématiques des incertitudes paramétriques et de simulation des débits, obtenues 

habituellement en utilisant cette approche, sont dues à une simulation des débits à partir de 

jeux de paramètres optimaux pour quelques évènements qui ne sont pas nécessairement liés 

d’un point de vue hydrologique (adapté de Ye et al., 2014 et Ajmal et al., 2015). Pourtant, 

cette stratégie de calage peut être utile pour explorer la variabilité inter-évènementielle (Thyer 

et al., 2009; Ajmal et al., 2015). 

Pour améliorer la résolution des problèmes ci-dessus, nous proposons une nouvelle stratégie 

de simulation des débits, utilisant le calage évènement par évènement, dans laquelle les jeux 

de paramètres optimaux obtenus pour chaque évènement sont représentés par un graphe à 

partir de leur prédictibilité. Ensuite, la technique de cluster “spinglass.community” est 

employée pour former des groupes de paramètres (deux groupes pour le cas d’étude) dans le 

graphe précédent, à partir d’un critère de maximisation de la densité de connections dans 

chaque groupe de paramètres (voir Reichardt and Bornholdt, 2006). Ceci permet d’exprimer 

les incertitudes des paramètres en tant que fonctions de probabilité conditionnelle sur 

quelques caractéristiques générales d’un évènement donné (e.g. hauteur de pluie, intensité 

moyenne). L’estimation des paramètres d’un modèle pluie-débit et de leurs incertitudes à 

partir de la méthode proposée a comme objectif de réduire les bandes d’incertitude de 

simulation des débits, en conservant ou en améliorant la simulation moyenne des débits sur 

les évènements de vérification (évaluée par les indicateurs ARIL et NS respectivement, voir 

Dotto et al., 2012; Ye et al., 2014), en comparaison avec d’autres stratégies traditionnelles de 

calage (voir Tan et al., 2008). La méthode proposée a été testée avec un modèle pluie-débit 

conceptuel (réservoir linéaire et infiltration de Horton), pour un bassin versant urbain de 

Lyon, France, avec 365 évènements pluvieux mesurés de 2004 à 2011 (séries chronologiques 

de pluie et débit). 
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Matériel et méthode  

 

Les méthodes décrites ci-dessous ont été testées avec une base de données de 365 évènements 

pluvieux du bassin versant de Chassieu (Lyon, France) mesurés en 2004 et 2011. Il s’agit d’un 

des sites expérimentaux de l’OTHU (Observatoire de Terrain en Hydrologie Urbaine, 

www.othu.org). Le bassin versant est une zone industrielle de 185 ha, avec des coefficients 

d’imperméabilisation et de ruissellement de 0.72 et 0.43 respectivement (Métadier, 2011). Le 

débit observé Yobs est estimé à partir de la hauteur d’eau à la sortie du bassin versant au pas de 

temps de 2 minutes et avec une incertitude élargie relative qui varie entre 15 % et 25 % 

(Métadier, 2011). Un modèle à réservoir linéaire, avec une constante de réservoir K1 (voir 

Sun et Bertrand-Krajewski, 2013), est utilisé pour représenter la relation pluie-débit (Eq 1, 2 

et 3). La pluie nette Xnet (L/s) est calculée à partir de la pluie observée Xobs (mm/h) par le 

modèle d’infiltration d’Horton, ayant comme paramètres les capacités d’infiltration du sol 

initiale et finale f0 et fc, et le taux de décroissance k (Eq 1 et Eq 2). Nous avons ajouté un 

paramètre q comme un terme additif pour représenter l’infiltration dans le réseau. La valeur 

de la surface active S est égale à 80 ha (0.43  185 ha) (Eq 3). La sélection de ce modèle 

particulier est basée sur sa performance et sa simplicité, comme suggéré par des études 

précédentes sur la même base de données (Sun et Bertrand-Krajewski, 2013). Les paramètres 

de ce modèle conceptuel sont décrits dans le Tableau 1, ainsi que les valeurs maximales et 

minimales possibles envisagées pour le calage (selon des expériences précédentes et des 

valeurs raisonnables déjà proposées dans la littérature, e.g. Sun et Bertrand-Krajewski, 2013). 

𝑓 = 𝑓𝑐 + (𝑓𝑐 − 𝑓0) ∙ 𝑒
−𝑘𝑡  

 

Eq 1 

𝑋𝑛𝑒𝑡 = (𝑋𝑜𝑏𝑠 − 𝑓) ∙ 𝑆 ∙ 10000/3600 

 

Eq 2 

𝑌𝑠𝑖𝑚(𝑡) = 𝑒−
∆𝑡
𝐾1 ∙ 𝑌𝑠𝑖𝑚(𝑡 − ∆𝑡) + [1 − 𝑒−

∆𝑡
𝐾1] 𝑋𝑛𝑒𝑡(𝑡 − 𝑇𝑙𝑎𝑔) + 𝑞 

 

 

Eq 3 

Tableau 1. Liste des paramètres utilisés pour le calage du modèle 

Paramètre (θ)  Unité  Valeurs [min, max] 

f0 mm/h [0, 50] 

fc mm/h [0, 5] 

k min
-1

 [0, 5] 

Tlag min [0, 60] 

K1 min [1, 120] 

q L/s [0, 20] 
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On note θ le jeu de paramètres du modèle hydrologique (Tableau 1) et p(θ/Y) sa fonction de 

densité de probabilité (pdf), étant données une série d’observations du débit Yobs. Par ailleurs, 

la méthode bayésienne a été testée dans de nombreux cas en modélisation hydrologique. Elle 

permet de calculer p(θ/Y) (e.g. Thyer et al., 2009). La base de la méthode pour estimer p(θ/Y), 

appelée distribution a posteriori, repose sur une fonction de vraisemblance et une 

connaissance a priori de la distribution p(θ) des paramètres, que nous pouvons exprimer 

comme suit : 

𝑝(θ 𝑌⁄ ) = 𝐶∏
1

√2𝜋�̂�𝑡
2
exp [−

1

2
(
𝑌𝑠𝑖𝑚 (𝑡, θ) − 𝑌𝑜𝑏𝑠 (𝑡)

�̂�𝑡
2 )2]

𝑛

𝑡=1

∙ 𝑃(θ) 
 

Eq 4 

où n est le nombre de mesures de débit Yobs, Ysim(t, θ) est le débit simulé par le modèle à un 

instant t à partir de la pluie observée Xobs et du jeu de paramètres θ, p(θ) est une loi de 

probabilité uniforme pour chaque paramètre (à partir des intervalles [min, max] du Tableau 

1), C est un coefficient de normalisation et �̂�𝑡
2 est la variance des résidus, considérée égale à 

l’incertitude standard au carré de la valeur du débit Yobs(t). L’algorithme DREAM est utilisé 

pour déterminer p(θ/Y) (Vrugt et al., 2008). Le jeu de paramètres représentant la valeur 

optimale (vraisemblance maximum) parmi toutes les valeurs probables p(θ/Y) est appelée θopt. 

Le but est de déterminer une estimation de p(θ/Y) et θopt en fonction des observations de 

calage Xobs et Yobs qui maximisent la capacité de simulation moyenne des débits dans la phase 

suivante de vérification (mesurée à partir de l’indicateur de Nash-Sutcliffe NS), en minimisant 

la largeur des bandes d’incertitude moyenne des débits simulées, largeur déterminée par 

l’indicateur ARIL des paramètres - Average Relative Interval Length) (voir e.g. Ye et al., 

2014). Les indicateurs NS et ARIL liés au jeu de paramètres θopt sont calculés pour chaque 

évènement de vérification à partir des Eq 5 et Eq 6. 

𝑁𝑆(θ𝑜𝑝𝑡) =  1 − 
∑ (𝑌𝑠𝑖𝑚 (𝑡, θ𝑜𝑝𝑡) − 𝑌𝑜𝑏𝑠 (𝑡))

2
𝑛
𝑡=1

∑ (�̅�𝑜𝑏𝑠 − 𝑌𝑜𝑏𝑠 (𝑡))
2𝑛

𝑡=1

 

 

Eq 5 

 

𝐴𝑅𝐼𝐿(θ𝑜𝑝𝑡) =  
1

𝑛
∑ 

𝐿𝑖𝑚𝑖𝑡𝑒𝑠𝑢𝑝,𝑡 − 𝐿𝑖𝑚𝑖𝑡𝑒𝑖𝑛𝑓,𝑡

𝑌𝑠𝑖𝑚 (𝑡, θ𝑜𝑝𝑡)

𝑛

𝑡=1

 
 

Eq 6 

où n est le nombre de mesures de débit Yobs et �̅�𝑜𝑏𝑠 leur moyenne. Ysim(t, θ) est le débit simulé 

par le modèle à un instant t à partir de la pluie observée Xobs et du jeu de paramètres θopt. 

𝐿𝑖𝑚𝑖𝑡𝑒𝑠𝑢𝑝,𝑡 et 𝐿𝑖𝑚𝑖𝑡𝑒𝑖𝑛𝑓,𝑡 sont, respectivement, les limites supérieure et inférieure pour un 

intervalle de confiance à 95 % à un instant t à partir de p(θ/Y) ou p(θ/Y, T1) et p(θ/Y, T2) selon 

le cas. 

La fonction p(θ/Y) est calculée par trois approches, en utilisant 255 évènements pluvieux de 

calage choisis de manière aléatoire parmi les 365 évènements disponibles : 

- Calage évènement par évènement (SE) : les évènements sont calés séparément par la 

méthode bayésienne. Ceci permet d’obtenir un jeu optimal de paramètres θopt i et une 

estimation de p(θ/Y)i pour chaque évènement de calage i (i = 1:255). La fonction p(θ/Y) 

globale est calculée comme la probabilité marginale de toutes les fonctions p(θ/Y)i et θopt 

comme la moyenne des θopt i. 



148 

 

- Calage multi-évènementiel (ME) : le calage est effectué globalement en une seule fois avec 

l’ensemble des évènements pluvieux (simulation chronologique de 255 évènements) pour 

obtenir directement un seul jeu de paramètres θopt et une fonction globale p(θ/Y). 

- Calage évènementiel par cluster (SEClusters): le groupe de 255 jeux de paramètres optimaux 

θopt i obtenus avec l’approche SE sont classés dans deux types T1 et T2, avec l’objectif de 

regrouper les évènements qui ont des caractéristiques hydrologiques similaires. L’hypothèse 

est que deux évènements i et j (i = 1:255 et j = 1:255) sont connectés si le jeu optimal de 

paramètres θopt i obtenu pour l’évènement i est capable de reproduire également l’évènement j 

et si θopt j est lui aussi capable de reproduire l’évènement i, dans les deux cas avec un 

indicateur de Nash-Sutcliffe NS > 0.75 fixé comme valeur seuil. Une matrice de connectivité 

symétrique AM est remplie avec AM(i, j) = 1 si les évènements de calage i et j sont connectés 

et AM(i, j) = 0 sinon (pour i = j, AM(i, j) = 0 par convention). La technique de clustering est 

appliquée à AM pour identifier les groupes d’évènements connectés. La fonction 

“spinglass.community” avec spins = 2 (cluster supervisé de deux groupes) (voir Reichardt et 

Bornholdt, 2006) du package “igraph” (Csardi et Nepusz, 2006), implémentée sur R (R 

Development Core Team, 2016), est utilisée pour classer les évènements en type T1 ou T2. La 

fonction p(θ/Y) est calculée de la même manière que dans l’approche SE, mais elle est répartie 

en deux pdf conditionnelles p(θ/Y, T1) et p(θ/Y, T2) en utilisant les types T1 et T2. θopt est 

défini également dans deux valeurs θoptT1 et θoptT2, calculées comme la moyenne des θopt 

dans chaque groupe T1 et T2. La catégorisation d’un évènement pluvieux de vérification dans 

un groupe hydrologique (T1 ou T2), pour décider s’il faut utiliser p(θ/Y, T1), θoptT1 ou p(θ/Y, 

T2), θoptT2 dans la simulation des débits, est effectuée avec un modèle de classement Kernel 

KCM (fonction fitcsvm sur Matlab, Cristianini and Shawe-Taylor, 2000) en utilisant comme 

variables d’entrée certaines caractéristiques de la pluie. 

 

Résultats et discussion 

 

Dans le cas de SEClusters, la technique de clustering a été appliquée sur la matrice AM, en 

classant les évènements de calage dans deux groupes (32 % et 36 % des évènements pour T1 

et T2 respectivement). Ce classement a permis le calcul de p(θ/Y, T1) et θoptT1 d’une part, et 

de p(θ/Y, T2) et θoptT2 d’autre part. Un KCM a été proposé pour décider s’il faut utiliser p(θ/Y, 

T1), θoptT1 ou p(θ/Y, T2), θoptT2 dans la simulation des débits d’un évènement de vérification 

donné, en le désignant comme étant de type T1 ou T2. Les caractéristiques suivantes de la 

pluie ont été retenues dans le KCM comme variables d’entrée pour chaque évènement de 

calage (choisies à partir d’essais préalables) : intensité moyenne [mm/h], intensité maximum 

[mm/h], durée [min], hauteur totale de pluie [mm], nombre d’intensités > 0 mm/h [# 

données], accélération moyenne de la pluie [mm/h
2
], accélération maximum de la pluie 

[mm/h
2
], accélération minimum de la pluie [mm/h

2
] et hauteur moyenne [mm]. Le KCM a 

donné un pourcentage d’assertivité de classement sur les évènements de calage d’environ 

80 %.  

La vérification est exécutée avec les 110 évènements restants pour les trois approches 

proposées (SE, ME et SEClusters). Chaque évènement de vérification a pu être classé T1 ou 

T2 à partir du KCM selon ses caractéristiques (i.e. intensité moyenne, intensité maximum, 

etc.). Les valeurs ARIL des paramètres et de NS sont calculées à partir des simulations de 

débit faites avec les pdfs p(θ/Y) et θopt pour les approches SE ou ME, et avec les pdfs p(θ/Y, 

T1) ou p(θ/Y, T1) et θoptT1 et θoptT2 pour l’approche SEClusters (Figure 1). 
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Figure 1. Indicateurs ARIL et NS pour les 110 évènements de vérification, pour les 3 

approches de calage étudiées. 

La stratégie de calage SEClusters montre une réduction des bandes d’incertitude dans la 

simulation des débits (valeurs ARIL des paramètres) par rapport à la stratégie traditionnelle de 

calage SE de 2 à 1.6, pour 50 % des évènements de vérification (Figure 1, gauche). La 

simulation moyenne des débits montre aussi une amélioration des valeurs de Nash-Sutcliffe 

(NS) de 0.4 à 0.6 pour 50 % des évènements (Figure 1, droite). Les valeurs ARIL montrent 

que les bandes d’incertitude des débits obtenues en utilisant l’approche ME sont beaucoup 

plus étroites (valeur proche de zéro) que celles obtenues à partir des autres stratégies (SE et 

SEClusters) (Figure 1, gauche). Dans ce cas, la plupart des valeurs de débit en vérification se 

trouvent en dehors des limites des bandes d’incertitude de simulation des débits. D’autre part, 

les bandes d’incertitudes obtenues avec les approches SE et SEClusters incluent environ 95 % 

des débits de vérification, même si pour l’approche SE les valeurs ARIL dépassent 2 (largeur 

moyenne des intervalles d’environ 200 % des valeurs de débit), ce qui pourrait être considéré 

comme une surestimation des incertitudes des débits simulés. 

 

Conclusions 

 

Ces résultats sont considérés comme satisfaisants pour utiliser le KCM déjà calé pour la 

vérification. La stratégie de calage proposée fournit une estimation des bandes d’incertitude 

des débits simulés à partir des incertitudes des paramètres expliquant environ 95 % des débits 

mesurés. La simulation moyenne des débits montre aussi une amélioration de l’indicateur 

Nash-Sutcliffe (NS) de 0.4 à 0.6 pour 50 % des évènements. Une même structure de modèle 

pluie-débit permet de représenter deux groupes de conditions hydrologiques différentes pour 

un bassin versant urbain au moyen de la variabilité des paramètres optimaux pour tous les 

évènements pluvieux. 
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CHAPITRE 5 Identification d’erreurs dans des séries pluviométriques a haute résolution 

temporelle à travers des approches fondées sur des modèles conceptuels 
 

Contexte et objectifs 

 

Des modèles mathématiques simples peuvent constituer une description adéquate du 

processus de l’écoulement des eaux dans les bassins versants urbains, quand les paramètres 

sont bien identifiés à partir d’analyses antérieures ou d’expériences. Cependant, les situations 

dans lesquelles des modèles étalonnés performants reproduisent des valeurs de débit 

irrégulières sont dans beaucoup de cas dues aux erreurs dans la saisie des données de 

précipitations. Ces erreurs peuvent avoir différentes origines, un cas significatif étant 

l’utilisation de données pluviométriques locales comme des entrées directes, sans considérer 

la variabilité spacio-temporelle des précipitations (Kavetski et al., 2006). Sur base de cette 

hypothèse, des études récentes ont proposé l’estimation nouvelle (Modelisation Inverse) ou 

corrigée (Approche Bayésienne) de séries chronologiques de pluies représentatives 

(Leonhardt et al., 2014). Ces séries devraient permettre la reproduction des valeurs de débit 

mesuré par un modèle hydrologique bien calibré. Néanmoins, les composants systématiques 

et accidentels des erreurs de mesure de précipitations ne sont pas connus à l’avance, et leur 

structure peut être complexe et variable. La méthodologie proposée ici cherche à évaluer le 

potentiel des modèles de correction de précipitations pour identifier et corriger les erreurs 

dans les données de pluie. Elle a été appliquée à un bassin versant de Lyon, France, avec des 

enregistrements de 30 événements pluvieux de 2007 à 2008 (pluviomètre et série 

chronologique de débit, pas de temps de 1 et 2 min respectivement).  

La méthode bayésienne a été appliquée en utilisant une équation de de correction d’erreurs 

générales (Vrugt et al., 2008; Leonhardt et al., 2014). 

 

Icorr=Ki*Imesuré                       Eq. 1 

La série chronologique d’intensité de précipitations mesurée I (mm/h) peut être divisée en une 

fenêtre temporelle I [a, b]i (de taille égale ou inégale) avec l’index i, et les précipitations dans 

chaque intervalle sont corrigées par l’Eq. 1 avec le facteur de correction associé Ki . Eq. 1 

n’est pas en mesure de corriger les précipitations quand Imesuré = 0. Comme cette situation est 

fréquente dans les événements pluvieux, un autre modèle de correction a été proposé: 

 

 

 

où I est l’intensité de précipitations obtenue à travers un modèle inversé (Leonhardt et al., 

2014). Ceci génère une intensité pluviale probable pour quand elle n’avait pas été mesurée. 

De plus, un nombre n de fenêtres de tailles égales ou inégales I [a, b]i est testé pour toute série 

I chronologique d’intensité pluviale mesurée. Taille égale: divisez en parts égales n et 

appliquez Ki à chaque I [a, b]i avec i = 1:n (Eq. 1 ou Eq. 2). Taille non-égale: évaluez les 

signaux de résidus de débit Qres (différence entre les débit mesurés et simulés) avec un 

algorithme Détecteur de Pas (Canny, 1986). La longueur et l’emplacement de chaque fenêtre 
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temporelle dans Qres [a, b]i peut être projetée dans la série de précipitations I [a, b]i par mise à 

l’échelle, basée sur la durée totale de l’intensité pluviale I et la série chronologique de 

ruissellement Q. Ki est ensuite appliquée à chaque fenêtre I [a, b]i (Eq. 1 ou Eq. 2). 

 

Quatre modèles de correction de précipitations ont été étudiés: 1) CTW: correction 

traditionelle sur des fenêtres temporelles de taille égale (en utilisant  l’Eq. 1), 2) VTW: 

correction sur des fenêtres de taille inégale (en utilisant l’Eq. 1), 3) CTWrev: correction 

associée à un modele inversé sur des fenêtres temporelles de taille égale (en utilisant l’Eq. 2) 

et 4) VTWrev: correction associée à un modele inversé sur des fenêtres temporelles de taille 

inégale (en utilisant l’Eq. 2). Trente scénarios d’erreur ont été vérifiés avec la méthode Monte 

Carlo, en introduisant des diviseurs Kj intro ou des zéros sur des segments aléatoires avec 

l’index j dans la série chronologique de mesure de précipitations d’origine (présumées être 

des erreurs connues ou contrôlées). Les quatre modèles ont été testés pour évaluer leur 

capacité à détecter les erreurs contrôlées générées et à reconstruir la série chronologique de 

précipitations d’origine.  

 

Résultats  

 

Concernant l’analyse d’un événement unique, les résultatas sont présentés pour l’événement 

pluvieux mesuré entre le 11/02/2007 à 23:06 au 12/02/2007 à 07:12. La Figure 1 compare 

l’hydrographe mesuré (bleu), l’hydrographe produit par les précipitations avec des erreurs 

générées (noir) et avec les précipitations corrigées (rouge) par le modèle CTW. La Figure 2 

montre les différences entre les erreurs identifiées et controllées, Krecons et Kintro. La structure 

d’erreurs (facteurs K) a été prédite raisonnablement dans la durée puisque Krecons – Kintro ≈ 0. 

En partant d’une analyse générale à l’échelle de plusieurs événements (30 événements), les 

valeurs de NS et RMSE (ajustement entre les précipitations d’origines et les précipitations 

corrigées) pour tous les événements pluvieux et tous les modèles sont présentées dans les 

Figures 3 et 4. Les meilleurs résultats ont été obtenus avec le modèle CTWrev pour la justesse 

(RMSE les plus bas) comme pour la précision (NS le plus bas, Figure 4) et la conservation de 

la masse.  
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Figure 1. Hydrographes: mesuré (bleu), produit par des précipitations corrompues (noir) et 

produit par des précipitations corrigées (rouge) 

 

Figure 2. Simulation performante du facteur K: Krecons (rouge) et Kintro (noir) 
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Figure 3. indicateur RMSE pour les quatre modèles de correction de précipitations  

 

Figure 4. indicateur NS pour les quatre modèles de correction de précipitations 

 

Conclusions principales 

 

L’étude propose une approche nouvelle pour évaluer le potentiel de quatre modèles de 

correction de précipitations, en termes de l’identification et la description de différentes 

structures d’erreurs sous-jacentes dans dans des données pluviométriques. Trois nouveaux 

modèles de correction d’erreurs ont été formulés dans des traveaux précédents (Kavetski et 

al., 2006; Leonhardt et al., 2014), ainsi que la mise en oeuvre d’un algorithme de Détection de 

Pas de temps. La structure d’erreur a été raisonnablement prédite dans la durée par les 

modèles de correction de précipitations testés. Cependant, le modèle le plus simple a 

fonctionné mieux que les autres.  

 



154 

 

CHAPITRES 6 et 7. Modèles conceptuels de qualité d’eaux pluviales: une révision à 

travers la reconstruction de variables d’état virtuelles  

 

Introduction 

 

Durant les 40 dernières années, le modelage des dynamiques des charges de Matière en 

suspension (TSS) dans les eaux pluviales au débouché de bassins de versant urbains a été 

discuté en majorité vis à vis de l’idée d’accumulation/érosion transfère (Sartor et al., 1974). 

Une grande quantité de formulations de modèles analogues ont été proposées et testées, et 

dont les constats peuvent être presque impossibles à généraliser pour des applications dans la 

réalité, à cause des restrictions suivantes dans les paramètres expérimentaux/méthodologiques 

(Bonhomme and Petrucci, 2017): (i) des conditions de laboratoires contrôlées non-

représentatives, (ii) des nombres limités de données TSS, (iii) des nombres limités 

d’événements pluvieux, et (iv) l’évaluation insuffisante de l’incertitude dans les données et 

dans les paramètres de modèles.  

La structure de modèle de pollutographe la plus simple trouvée dans la documentation est 

probablement la courbe d’étalonnage RC (Sartor et al., 1974), dans laquelle la charge du 

débouché du bassin versant (kg/s) à l’instant t (s) est calculée par une relation non-linéaire au 

débit Q (m
3
/s) et aux paramètres d’ajustement M et r: 

𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) = 𝑀 ∙ 𝑄(𝑡)𝑟  

La deuxième grande famille de structures de modèles (que nous nommerons ACUM) 

représente M(t), plutôt qu’avec une valeur constante, comme une variable d’état décomposée 

d’un stock de masse virtuel disponible, qui au final limitera la production de charge donnée 

par 𝑄(𝑡)𝑟.  

D’autre part, le cadre de calibration bayésien a émergé comme une approche basée sur modèle 

pour la reconstruction d’entrées non-mesurées ou de variables d’état (e.g. Leonhardt et al., 

2014). Pour 255 événements pluvieux, une reconstruction bayésienne de la variable d’état 

virtuelle M(t) est proposée, à travers le modèle RC (avec r comme paramètre de calibration 

inclus dans le schéma d’inférence) (formulation F1). Par ailleurs, une formulation alternative 

F2 est explorée, dans laquelle M est un paramètre constant et r(t) est défini comme la variable 

d’état virtuelle à être reconstruite, en considérant la même structure de modèle RC.  

 

Matériels et méthodes  

 

Les deux formulations d’inférence différentes (F1 et F2) sont testées en utilisant la charge 

TSS et les données de débit (pas de temps de 2 min) d’un bassin versant urbain séparé de 85 

ha à Lyon, France, collectées de 2004 à 2011. Les paramètres de modèle (r pour F1, M pour 

F2) et variables d’état (M(t) pour F1, r(t) pour F2) sont estimés pour chaque événement 

pluvieux avec une approche bayésienne (algorithme DREAM, cf. Vrugt et al., 2009), en 

séparant explicitement les erreurs d’estimation de la variable de débouché (load(t)) et les 

variables d’état reconstruites (M(t) ou r(t)) dans la fonction de probabilité (de Leonhardt et 

al., 2014). L’erreur de modèle pour M(t) ou r(t) est prétendue égale à son propre standard de 

déviation (σM(t) ou σr(t)), avec l’objectif de permettre aux variables d’état de varier moins 

librement dans l’espace d’inférence, ce qui les rapproche de la moyenne (reconstruction 

moins informative). 
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Résultats 

 

Dans un objectif d’illustration, la simulation du pollutographe de charge TSS obtenue par la 

calibration d’un modèle RC traditionnel est comparée aux reconstructions F1 et F2 et aux 

valeurs mesurées dans la Figure 1a (vert, bleu, rouge et gris resp. avec 95 % de bornes de 

confiance) dans un exemple d’événement pluvieux. Des reconstructions des variables d’état 

virtuelles M(t) et r(t) obtenues par F1 and F2 sont présentées dans les Figures 1b et 1c (bleu et 

rouge, resp. avec 95 % de bornes de confiance). 

Figure 1. a) simulation de pollutographe de charge TSS avec 95 % de bornes de confiance 

pour le modèle traditionnel RC (vert), reconstructions F1 (bleu) et F2 (rouge), et données 

expérimentales (noir), b) variables d’état virtuelles estimées pour M(t) (bleu) et c) r(t) (rouge) 

avec 95 % de bornes de confiance. 

Pour cet exemple, F1 comme F2 permettent d’améliorer considérablement le résultat (Nash = 

0.85, lignes bleues et rouges dans la Figure 1a), en comparaison avec la calibration 

traditionnelle RC (Nash = 0.65, ligne verte dans la Figure 1a). Des analyses de regroupement 

montrent la faible possibilité de reproduction de ces courbes temporellement variables M(t) ou 

r(t) concernant: (i) les similarités dans leur forme (contrairement à des formulation 

traditionnelles ACUM, où M(t) est toujours une fonction en décomposition) et (ii) leur 

capacité de prédiction parmi d’autres événements pluvieux (au sens de la similarité entre une 

courbe donnée M(t) ou r(t) pour expliquer les manques potentiels du modèle RC pour 

reproduire un autre événement de l’ensemble des données). 

 

Conclusions 
 

Ce travail suggère le manque de représentation d’un processus essential dans le modèle de 

courbe d’étalonnage (RC) traditionnel, en se fondant sur les observations de 255 événements 

pluvieux. Les résultats indiquent que la difficulté de reproduction de ce processus manquant 

le rend pratiquement ininterprétable en termes d’un unique état virtuel de masse disponible 

dans le bassin de versant qui diminue avec le temps, comme nombre de modèles traditionnels 

l’ont supposé. Cette étude démontre comment des mesures à haute résolution temporelle 

peuvent fournir un support pour revisiter et remettre en question des modèles existants, et 

potentiellement permettre le développement de nouvelles formulations de modèles 

d’accumulation/érosion transfère. 
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2. APPLICATION OF THE SOBOL’S SENSITIVITY INDEXES  

A description of this methodology and its computational implementation in Chapter 2 for 

estimating the influence of each uncertainty source over the uncertainty of MSRE (i.e. 

CI(MSRE)min95%) is given in the following lines. Each of the variables in the calculation of 

MSRE in Table 4 (uncertainty sources from 1 to 6, Num_unc_inp = 6) can be represented as a 

as a time series. The LHS can be applied to generate random time series for each of these 

variables, following the probability distributions indicated in Table 4. A certain number of 

randomly generated time series (Num_sim = 600) can be split into two sub-matrices (UP and 

DOWN), where each one corresponds to half of the simulations (Num_sim/2) (Figure 1). 

 

 

  

 

 

 

  

 

 

 

  

 

  

 

 

The SSI requires the comparison between different scenarios (given by the UP and DOWN 

matrices in Figure 1). Therefore, for different combinations of the UPs and DOWNs sub 

matrices (an UP or DOWN for each uncertainty source), one will have an output array of 

length Num_sim/2, containing the MSRE computed for each randomly generated time series 

(simulations in rows, Figure 1). A “combination matrix” that contains all the required 

combinations of UP and DOWN sub matrices for computing the SSI is summarized in Figure 

2. The combination matrix is made by: (i) two reference rows (first and last) that are made by 

exclusively to the DOWN and UP labels (without mixing them) and (ii) the intermediate 

rows, in which a given scenario i (where 2 ≤ i ≤ Num_scenarios/2) has an “opposite” row in 

the position i + Num_unc_inp (e.g. row 4 is the opposite of row 11 in Figure 2, left) (see more 

details in Glen and Isaacs, 2012). Therefore, the result of the MSREs (length of Num_sim/2) 

for each scenario of Ups and DOWNs sub matrices (rows in the combination matrix) are 

grouped in a MSRE SR matrix, as shown in Figure 2, right. 
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Figure 1. Data organization for matrices from LHS random generation of: a) flow rate time series, b) sampling 

volumes, c) start/ending of event, d) TSS lab. values, e) TSS time series and f) volume time series. 
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Figure 2. Combination matrix (left) for computing the SSI, based on two reference scenarios (first and last row) 

and “opposite” combinations and MSRE SR matrix (right). 

Once the MSRE SR is obtained, Glen and Isaacs (2012) established that the S (main effect 

sensitivity index) and T (total effect sensitivity index) will be computed based in the two 

reference scenarios: the first and last row of combination matrix (n = 1 and n = end) (Figure 

3). The main and the total sensitivity indexes for uncertainty input k will be then calculated 

based in the correlation coefficient ρ between MSRE SR(: , k+1) and MSRE SR(: , 

k+1+num_unc_inp), compared to the “reference” correlations MSRE SR(: , 1) and MSRE SR(: 

, end). Calculations are summarized in Figure 3. 
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3. COMPLEMENTARY PUBLICATIONS AND WORKS 

 

Gap-filling of dry weather flow rate and water quality measurements in urban catchments 

by a time series modelling approach  

 

Presented in:  

Sandoval S., Vezzaro, L., Bertrand-Krajewski, J.-L., (2016). Gap-filling of dry weather flow 

rate and water quality measurements in urban catchments by a time series modelling 

approach. Proceedings of Novatech 2016, Lyon, France, 28 June-1 July, 4 p.  

 

Résumé 
 

Les séries chronologiques de débit et de qualité des eaux par temps sec dans les systèmes 

d’assainissement unitaires peuvent contenir une quantité importante de données manquantes, 

ceci pour de multiples raisons, telles que les défaillances de fonctionnement des capteurs ou 

des contributions additionnelles par temps de pluie. Par conséquent, l’approche proposée 

cherche à évaluer le potentiel de la méthode Singular Spectrum Analysis (SSA), une méthode 

de modélisation et de comblement de données manquantes, pour combler des séries 

chronologiques de temps sec. La méthode SSA est testée en reconstruisant 1000 séries 

chronologiques discontinues artificielles, construites aléatoirement à partir de séries réelles de 

débit et matières en suspension (MES) (année 2007, pas de temps de 2 minutes, système 

unitaire, Ecully, Lyon, France). Les résultats montrent la capacité de la méthode à combler 

des lacunes de données supérieures à 0.5 jour, surtout entre 0.5 et 1 jour (NSE moyen < 0.6) 

dans les séries chronologiques de débit. Les résultats sur les MES ne sont pas encore 

satisfaisants. Plusieurs analyses à différentes échelles temporelles sont envisagées. 

 

Mots clés : Comblement de lacunes, mesures en ligne, métrologie, séries chronologiques, 

temps sec, validation de données. 

 

Abstract 

Flow rate and water quality dry weather time series in combined sewer systems might contain 

an important amount of missing data due to several reasons, such as failures related to the 

operation of the sensor or additional contributions during rainfall events. Therefore, the 

approach hereby proposed seeks to evaluate the potential of the Singular Spectrum Analysis 

(SSA), a time-series modelling/gap-filling method, to complete dry weather time series. The 

SSA method is tested by reconstructing 1000 artificial discontinuous time series, randomly 

generated from real flow rate and total suspended solids (TSS) online measurements (year 

2007, 2 minutes time-step, combined system, Ecully, Lyon, France). Results show up the 

potential of the method to fill gaps longer than 0.5 days, especially between 0.5 days and 1 

day (mean NSE > 0.6) in the flow rate time series. TSS results still perform very poorly. 

Further analysis at different temporal scales might be needed.  
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Keywords: Data validation, dry weather, gap filling, metrology, online monitoring, time 

series,  

Introduction 
 

Flow rate and water quality time series measured during dry weather periods at different 

locations in urban drainage systems (e.g. sewer system, WWTP, gully pots, detention basins) 

can be useful for several purposes (e.g. modelling, real time control, water management…). 

However, long-term dry weather time series may contain an important amount of unregistered 

or invalidated data due to failures related to the operation of the sensors, errors in 

measurement devices, maintenance and cleaning activities or disturbing contributions during 

rainfall events (wet weather period). These data gaps might vary from 1 or 2 minutes to days, 

weeks or even months. 

Previous data-driven experiences sought to estimate the dry weather signal by the use of 

simplified periodic equations (e.g. Rodriguez et al., 2013) or by filling gaps with data 

corresponding to similar dry weather periods (e.g. Métadier and Bertrand-Krajewski, 2011). 

However, these approaches do not consider the continuity of the real and long-term dry 

weather time series, dismissing possible frequency-variable, non-stationary and seasonal 

behaviors. These simplifications might bring up inconsistent results such as overestimations 

of the dry weather contributions during rainfall events, or mismatches between the 

beginning/ending of the gap with the beginning/ending of the signal to be fitted, especially for 

longer gaps (beyond hourly scale) (adapted from Métadier, 2011). 

Singular Spectrum Analysis (SSA) is a modern non-parametric method for the analysis of 

time series and digital images (Korobeynikov, 2010). The SSA method has been applied for 

filling gaps in long-term and non-linear time series from analogue environmental contexts, 

reporting encouraging results (Musial et al., 2011). The aim of this study is to assess the 

potential of the SSA method to estimate periods of missing data (from 6 minutes to 4.3 days), 

which might be useful for several additional applications, such as assessing the dry weather 

behavior during rainfall events. 

 

Materials and methods 
 

The method is tested with a one year flow rate and a TSS time series of the Ecully catchment 

(combined system, Lyon, France). The raw data includes 261 477 measurements (year 2007, 2 

min time-step), with duration of gaps ranging from 2 min to 4.3 days for flow rate and 8.29 

days for TSS, throughout the whole year (3.6 % and 28 % of the year respectively). Three 

data processing steps are applied to the raw data: 

- Removing flow rate values during dry weather greater than the 95 percentile of the flow 

rates measured during the preceding storm event, which are about 70 L/s (dry weather 

outliers). For the case of TSS, values over 590 mg/L are considered as outliers from 

preliminary analyses. 

- Removing the wet weather periods for both flow rate and TSS series (event durations ranged 

from 50 minutes to 39 hours, giving a total duration of events of about 21 days of additional 

data to be removed, even if they are already missing values). 
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- Filling redundant short-gaps in both series (with durations from 2 to 6 minutes), by linear 

interpolation, as the purpose is to explore especially longer gaps. 

After applying the above raw data processing, the total percentage of gaps in the time series 

increased to 13 % (flow rate) and 34 % (TSS) of the year, with gaps from 6 minutes to 4.3 

days for flow rate and 6 minutes to 8.3 days for TSS. The influence of beginning and ending 

of rainfall events over the flow rate and TSS time series (rainfall event) is identified from 

previous studies in this data set (Métadier, 2011). 

The SSA method is applied to fill the gaps in both flow rate and TSS time series with the 

function “gapfill”, from the “Rssa” package (Korobeynikov, 2010), implemented in R 

software (R Development Core Team, 2015). The function “gapfill” fills the missed entries in 

the series by performing forecast from both sides of the gap and taking an average in order to 

reduce the forecast error (see details: SSA sequential gap-filling method in Golyandina and 

Osipov, 2007). With the purpose of evaluating the performance of the SSA method in terms 

of predictability, a validation strategy based on the Monte Carlo method is hereby proposed. 

1000 artificial discontinuous time series are generated by introducing gaps with random 

durations (uniformly distributed random numbers from 6 minutes to 4 days) over random 

parts of the original time series, with a check to guarantee a uniform distribution of gaps along 

the series. The additional percentage of gaps for each of the artificial discontinuous time 

series was set between 5 % and 30 % of the total duration of the time series (one year). The 

artificial time series are completed (gap filling) by the SSA method and compared to the 

original time series using the Nash-Sutcliffe model Efficiency (NSE). The NSE is chosen as 

the performance measure as it compares the performance of the method to a model that only 

uses the mean of the observed data (simplest prediction method) (from Bennett et al., 2013). 

The variability of the NSE value against gaps of different duration is analyzed as well. 

 

Results and discussion 
 

For illustrative purposes, the reconstruction obtained by the SSA method for an artificial gap 

(from 20/10/2007 16:23 to 23/10/2007 08:35) in the flow rate time series is compared to the 

original measured values, reporting a NSE value of 0.5 (Figure 1 a; line: reconstruction, dots: 

measurements). The NSE value is calculated between all the time series fragments 

reconstructed by the SSA method in each of the 1000 artificial discontinuous time series and 

the corresponding fragments in the original flow rate and TSS time series. Regarding flow 

rate, the NSE values are greater than 0.6 for all reconstructed fragments in half of the 1000 

artificial discontinuous time series (Figure 1 b). The cases in which the NSE values show a 

poor performance of the SSA method can be attributed to the complexity and the large 

amount of data in the series. This trend is stronger in the case of TSS time series, in which 75 

% of the NSE values are lower than zero (which is the NSE value corresponding to filling the 

gaps with the mean of the series). 
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a)  b)  

 
 

c)  d) 

 
 

 Figure 1. a) reconstruction obtained (line) for an artificial gap compared to the original flow 

rate values (dots), b) NSE values for the reconstruction of the 1000 artificial discontinuous 

flow rate, c) NSE values for gaps of different durations for flow rate and d) NSE values for 

gaps of different durations for TSS. 

The performance of the SSA method is also analyzed by grouping the NSE values obtained 

for the reconstruction of gaps of different durations. For the case of flow rate, the SSA 

method shows a better performance for filling long-term gaps longer than 0.5 days (Figure 1 

c). Specifically, the best performances are obtained for the reconstruction of gaps with 

durations between 0.5 day and 1 day (Figure 1 c). For shorter gaps, the results are poorer. This 

can be expected, as for this case, the SSA method includes long-term (weekly to monthly 

scales) components that are not related with the short-term (sub-daily scale) behaviors. 

Therefore, the SSA method at low temporal scales (e.g. daily or hourly scales) might have 

some potential adaptability by considering exclusively a certain amount of data adjacent to the 

gaps consistent with the temporal scale of analysis. However, filling gaps shorter than 0.5 day 
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with other methods that do not consider long-term patterns (e.g. mean values, typical dry 

weather daily curve or linear interpolations) might also be a suitable strategy. 

The results for TSS show the same trend as for the flow rate series but with a significantly 

lower performance (more complex behaviors at all temporal scales) (Figure 1 d). Previous 

analyses highlighted the importance of finding an appropriate approach for representing the 

different long-term and short-term behaviors, aimed at modelling flow rate and TSS dry 

weather time series. 
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